976 resultados para beta-blocker therapy
Resumo:
The low-energy β− emitter 161Tb is very similar to 177Lu with respect to half-life, beta energy and chemical properties. However, 161Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to 177Lu. It also emits low-energy photons that are useful for gamma camera imaging. The 160Gd(n,γ)161Gd→161Tb production route was used to produce 161Tb by neutron irradiation of massive 160Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) 161Tb from the bulk of the 160Gd target and from its stable decay product 161Dy. 161Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. 177Lu. A 161Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. Up to 15 GBq of 161Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%–90% of the available 161Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The 161Tb obtained was of the quality required to prepare 161Tb–DOTA-Tyr3-octreotate. We were able to produce 161Tb in n.c.a. form by irradiating highly enriched 160Gd targets; it can be obtained in the quantity and quality required for the preparation of 161Tb-labeled therapeutic agents.
Resumo:
Recently, a clinical study on patients with stable coronary artery disease (CAD) showed that external counterpulsation therapy (ECP) at high (300 mmHg) but not at low inflation pressure (80 mmHg) promoted coronary collateral growth, most likely due to shear stress-induced arteriogenesis. The exact molecular mechanisms behind shear stress-induced arteriogenesis are still obscure. We therefore characterized plasma levels of circulating microparticles (MPs) from these CAD patients because of their ambivalent nature as a known cardiovascular risk factor and as a promoter of neovascularization in the case of platelet-derived MPs. MPs positive for Annexin V and CD31CD41 were increased, albeit statistically significant (P<0.05, vs. baseline) only in patients receiving high inflation pressure ECP as determined by flow cytometry. MPs positive for CD62E, CD146, and CD14 were unaffected. In high, but not in low, inflation pressure treatment, change of CD31CD41 was inversely correlated to the change in collateral flow index (CFI), a measure for collateral growth. MPs from the high inflation pressure group had a more sustained pro-angiogenic effect than the ones from the low inflation pressure group, with the exception of one patient showing also an increased CFI after treatment. A total of 1005 proteins were identified by a label-free proteomics approach from MPs of three patients of each group applying stringent acceptance criteria. Based on semi-quantitative protein abundance measurements, MPs after ECP therapy contained more cellular proteins and increased CD31, corroborating the increase in MPs. Furthermore, we show that MP-associated factors of the innate immune system were decreased, many membrane-associated signaling proteins, and the known arteriogenesis stimulating protein transforming growth factor beta-1 were increased after ECP therapy. In conclusion, our data show that ECP therapy increases platelet-derived MPs in patients with CAD and that the change in protein cargo of MPs is likely in favor of a pro angiogenic/arteriogenic property.
Resumo:
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
Resumo:
Treatment of metastatic breast cancer with doxorubicin (Doxo) in combination with trastuzumab, an antibody targeting the ErbB2 receptor, results in an increased incidence of heart failure. Doxo therapy induces reactive oxygen species (ROS) and alterations of calcium homeostasis. Therefore, we hypothesized that neuregulin-1 beta (NRG), a ligand of the cardiac ErbB receptors, reduces Doxo-induced alterations of EC coupling by triggering antioxidant mechanisms. Adult rat ventricular cardiomyocytes (ARVM) were isolated and treated for 18-48 h. SERCA protein was analyzed by Western blot, EC coupling parameters by fura-2 and video edge detection, gene expression by RT-PCR, and ROS by DCF-fluorescence microscopy. At clinically relevant doses Doxo reduced cardiomyocytes contractility, SERCA protein and SR calcium content. NRG, similarly as the antioxidant N-acetylcystein (NAC), did not affect EC coupling alone, but protected against Doxo-induced damage. NRG and Doxo showed an opposite modulation of glutathione reductase gene expression. NRG, similarly as NAC, reduced peroxide- or Doxo-induced oxidative stress. Specific inhibitors showed, that the antioxidant action of NRG depended on signaling via the ErbB2 receptor and on the Akt- and not on the MAPK-pathway. Therefore, NRG attenuates Doxo-induced alterations of EC coupling and reduces oxidative stress in ARVM. Inhibition of the ErbB2/NRG signaling pathway by trastuzumab in patients concomitantly treated with Doxo might prevent beneficial effects of NRG in the myocardium.
Resumo:
PURPOSE: Although metabolic changes make diagnosis of insulinoma relatively easy, surgical removal is hampered by difficulties in locating it, and there is no efficient treatment for malignant insulinoma. We have previously shown that the high density of glucagon-like peptide-1 receptors (GLP-1R) in human insulinoma cells provides an attractive target for molecular imaging and internal radiotherapy. In this study, we investigated the therapeutic potential of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4, an (111)In-labeled agonist of GLP-1, in a transgenic mouse model of human insulinoma. EXPERIMENTAL DESIGN: [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4 was assessed in the Rip1Tag2 mouse model of pancreatic beta-cell carcinogenesis, which exhibits a GLP-1R expression comparable with human insulinoma. Mice were injected with 1.1, 5.6, or 28 MBq of the radiopeptide and sacrificed 7 days after injection. Tumor uptake and response, the mechanism of action of the radiopeptide, and therapy toxicity were investigated. RESULTS: Tumor uptake was >200% injected activity per gram, with a dose deposition of 3 Gy/MBq at 40 pmol [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4. Other GLP-1R-positive organs showed > or =30 times lower dose deposition. A single injection of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4 resulted in a reduction of the tumor volume by up to 94% in a dose-dependent manner without significant acute organ toxicity. The therapeutic effect was due to increased tumor cell apoptosis and necrosis and decreased proliferation. CONCLUSIONS: The results suggest that [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4 is a promising radiopeptide capable of selectively targeting insulinoma. Furthermore, Auger-emitting radiopharmaceuticals such as (111)In are able to produce a marked therapeutic effect if a high tumor uptake is achieved.
Resumo:
OBJECTIVE: To investigate the effects of tyrosine-kinase inhibitors of vascular endothelial growth factor (VECF) and platelet-derived growth factor (PDCF)-receptors on non-malignant tissue and whether they depend upon the stage of vascular maturation. MATERIALS AND METHODS: PTK787/ZK222584 and CGP53716 (VEGF- and PDGF-receptor inhibitor respectively), both alone and combined, were applied on chicken chorioallantoic membrane (CAM). RESULTS: On embryonic day of CAM development (E)8, only immature microvessels, which lack coverage of pericytes, are present: whereas the microvessels on E12 have pericytic coverage. This development was reflected in the expression levels of pericytic markers (alpha-smooth muscle actin, PDGF-receptor beta and desmin), which were found by immunoblotting to progressively increase between E8 and E12. Monotherapy with 2 microg of PTK787/ZK222584 induced significant vasodegeneration on E8, but not on E12. Monotherapy with CGP53716 affected only pericytes. When CGP53716 was applied prior to treatment with 2 microg of PTK787/ZK222584, vasodegeneration occurred also on E12. The combined treatment increased the apoptotic rate. as evidenced by the cDNA levels of caspase-9 and the TUNEL-assay. CONCLUSION: Anti-angiogenic treatment strategies for non-neoplastic disorders should aim to interfere with the maturation stage of the target vessels: monotherapy with VEGF-receptor inhibitor for immature vessels, and combined anti-angiogenic treatment for well developed mature vasculature.
Resumo:
Arterial hypertension and diabetes are potent independent risk factors for cardiovascular, cerebral, renal and peripheral (atherosclerotic) vascular disease. The prevalence of hypertension in diabetic individuals is approximately twice that in the non-diabetic population. Diabetic individuals with hypertension have a greater risk of macrovascular and microvascular disease than normotensive diabetic individuals. Hypertension is a major contributor to morbidity and mortality in diabetes, and should be recognized and treated early. Type 2 diabetes and hypertension share certain risk factors such as overweight, visceral obesity, and possibly insulin resistance. Life-style modifications (weight reduction, exercise, limitation of daily alcohol intake, stop smoking) are the foundation of hypertension and diabetes management as the definitive treatment or adjunctive to pharmacological therapy. Additional pharmacological therapy should be initiated when life-style modifications are unsuccessful or hypertension is too severe at the time of diagnosis. All classes of antihypertensive drugs are effective in controlling blood pressure in diabetic patients. For single-agent therapy, ACE-inhibitors, angiotensin receptor blocker, beta-blockers, and diuretics can be recommended. Because of concerns about the lower effectiveness of calcium channel blockers in decreasing coronary events and heart failure and in reducing progression of renal disease in diabetes, it is recommended to use these agents as second-line drugs for patients who cannot tolerate the other preferred classes or who require additional agents to achieve the target blood pressure. The choice depends on the patients specific treatment indications since each of these drugs have potential advantages and disadvantages. In patients with microalbuminuria or clinical nephropathy, both ACE-inhibitors and angiotensin receptor blockers are considered first line therapy for the prevention of and progression of nephropathy. Since treatment is usually life-long, cost effectiveness should be included in treatment evaluation.
Resumo:
Using a rabbit model of pneumococcal meningitis, we compared the pharmacokinetics and bactericidal activities in cerebrospinal fluid (CSF) of older (ciprofloxacin, ofloxacin) and newer (levofloxacin, temafloxacin, CP-116,517, and Win 57273) quinolones with those of the beta-lactam ceftriaxone. All quinolones penetrated into the inflamed CSF better than ceftriaxone, and the speed of entry into CSF was closely related to their degrees of lipophilicity. At a dose of 10 mg/kg.h, which in the case of the quinolones already in use in clinical practice produced concentrations attainable in the sera and CSF of humans, ciprofloxacin had no antipneumococcal activity (delta log10 CFU/ml.h, +0.20 +/- 0.14). Ofloxacin (delta log10 CFU/ml.h, -0.13 +/- 0.12), temafloxacin (delta log10 CFU/ml.h, -0.19 +/- 0.18), and levofloxacin (delta log10 CFU/ml.h, -0.24 +/- 0.16) showed slow bactericidal activity (not significantly different from each other), while CP-116,517 (delta log10 CFU/ml.h, -0.59 +/- 0.21) and Win 57273 (delta log10 CFU/ml.h, -0.72 +/- 0.20) showed increased bactericidal activities in CSF that was comparable to that of ceftriaxone at 10 mg/kg.h (delta log10 CFU/ml.h, -0.80 +/- 0.17). These improved in vivo activities of the newer quinolones reflected their increased in vitro activities. All quinolones and ceftriaxone showed positive correlations between bactericidal rates in CSF and concentrations in CSF relative to their MBCs. Only when this ratio exceeded 10 did the antibiotics exhibit rapid bactericidal activities in CSF. In conclusion, in experimental pneumococcal meningitis the activities of new quinolones with improved antipneumococcal activities were comparable to that of ceftriaxone.
Resumo:
Detailed studies of pharmacodynamic principles relevant to the therapy of bacterial meningitis are difficult to perform in man, while the rabbit model of bacterial meningitis has proved to be extremely valuable and has led to insights that appear relevant for the treatment of humans. Most importantly in the light of the restricted penetration of antibiotics into the CSF, animal studies have shown that in meningitis there is a dose-response curve between the CSF concentrations achieved by antibiotics and their bactericidal activity. This appears to be true for all classes of antibiotics thus far examined, including the beta-lactams, which do not show such a dose-response behaviour in other infections. Only CSF concentrations that exceed the MBC of the infecting organism by at least 10-30-fold achieve consistent and rapid bactericidal activity. Such rapid bactericidal activity is a requirement for successful therapy with beta-lactams and can be impaired with certain antibiotics by the specific conditions in infected CSF (protein content; acidic pH; slow-growing bacteria). However, rapid antibiotic killing of the infecting organisms may not be without adverse effects either. Some antibiotics, particularly beta-lactams lead to the brisk liberation of bacterial cell wall components (e.g. endotoxin, in the case of Gram-negative organisms) which have an inflammatory effect on the host and can lead to a temporary deterioration of the disease. Dexamethasone, when administered with the antibiotic, can prevent some of the adverse effects of rapid bacterial lysis.
Resumo:
Gut motility is modulated by adrenergic mechanisms. The aim of our study was to examine mechanisms of selective adrenergic receptors in rat jejunum. Spontaneous contractile activity of longitudinal muscle strips from rat jejunum was measured in 5-ml tissue chambers. Dose-responses (six doses, 10(-7) -3 x 10(-5)M) to norepinephrine (NE, nonspecific), phenylephrine (PH, alpha1), clonidine (C, alpha2), prenalterol (PR, beta1), ritodrine (RI, beta2), and ZD7714 (ZD, beta3) were evaluated with and without tetrodotoxin (TTX, nerve blocker). NE(3 x 10(-5)M) inhibited 74 +/- 5% (mean +/- SEM) of spontaneous activity. This was the maximum effect. The same dose of RI(beta2), PH(alpha1), or ZD(beta(3)) resulted in an inhibition of only 56 +/- 5, 43 +/- 4, 33 +/- 6, respectively. The calculated concentration to induce 50% inhibition (EC50) of ZD(beta3) was similar to NE, whereas higher concentrations of PH(alpha1) or RI(beta2) were required. C(alpha2) and PR(beta1) had no effect. TTX changed exclusively the EC50 of RI from 4.4 +/- 0.2 to 2.7 +/- 0.8% (p < 0.04). Contractility was inhibited by NE (nonspecific). PH(alpha1), RI(beta2), and ZD(beta3) mimic the effect of NE. TTX reduced the inhibition by RI. Our results suggest that muscular alpha1, beta2, and beta3 receptor mechanisms mediate adrenergic inhibition of contractility in rat jejunum. beta2 mechanisms seem to involve also neural pathways.
Resumo:
Gene-directed enzyme prodrug therapy is a form of cancer therapy in which delivery of a gene that encodes an enzyme is able to convert a prodrug, a pharmacologically inactive molecule, into a potent cytotoxin. Currently delivery of gene and prodrug is a two-step process. Here, we propose a one-step method using polymer nanocarriers to deliver prodrug, gene and cytotoxic drug simultaneously to malignant cells. Prodrugs acyclovir, ganciclovir and 5-doxifluridine were used to directly to initiate ring-opening polymerization of epsilon-caprolactone, forming a hydrophobic prodrug-tagged poly(epsilon-caprolactone) which was further grafted with hydrophilic polymers (methoxy poly(ethylene glycol), chitosan or polyethylenemine) to form amphiphilic copolymers for micelle formation. Successful synthesis of copolymers and micelle formation was confirmed by standard analytical means. Conversion of prodrugs to their cytotoxic forms was analyzed by both two-step and one-step means i.e. by first delivering gene plasmid into cell line HT29 and then challenging the cells with the prodrug-tagged micelle carriers and secondly by complexing gene plasmid onto micelle nanocarriers and delivery gene and prodrug simultaneously to parental HT29 cells. Anticancer effectiveness of prodrug-tagged micelles was further enhanced by encapsulating chemotherapy drugs doxorubicin or SN-38. Viability of colon cancer cell line HT29 was significantly reduced. Furthermore, in an effort to develop a stealth and targeted carrier, CD47-streptavidin fusion protein was attached onto the micelle surface utilizing biotin-streptavidin affinity. CD47, a marker of self on the red blood cell surface, was used for its antiphagocytic efficacy, results showed that micelles bound with CD47 showed antiphagocytic efficacy when exposed to J774A.1 macrophages. Since CD47 is not only an antiphagocytic ligand but also an integrin associated protein, it was used to target integrin alpha(v)beta(3), which is overexpressed on tumor-activated neovascular endothelial cells. Results showed that CD47-tagged micelles had enhanced uptake when treated to PC3 cells which have high expression of alpha(v)beta(3). The synthesized multifunctional polymeric micelle carriers developed could offer a new platform for an innovative cancer therapy regime.
Resumo:
We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2)>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.
Resumo:
PURPOSE: To evaluate the consecutive treatment results regarding pterygium recurrence and the efficacy of exclusive strontium-/yttrium-90 beta-irradiation for primary and recurrent pterygia and to analyze the functional outcome. PATIENTS AND METHODS: Between October 1974 and December 2005, 58 primary and 21 recurrent pterygia were exclusively treated with strontium-/yttrium-90 beta-irradiation with doses ranging from 3,600 to 5,500 cGy. The follow-up time was 46.6 +/- 26.7 months, with a median of 46.5 months. RESULTS: The treatment led to a size reduction in all pterygia (p < 0.0001). Neither recurrences nor side effects were observed during therapy and follow-up in this study. Best-corrected visual acuity increased (p = 0.0064). Corneal astigmatism was reduced in recurrent pterygia (p = 0.009). CONCLUSION: Exclusive strontium-/yttrium-90 beta-irradiation of pterygia is a very efficient and well-tolerated treatment, with remarkable aesthetic and rehabilitative results in comparison to conventional treatments, especially for recurrent lesions which have undergone prior surgical excision.
Resumo:
Rational outpatient therapy restricts antibiotics to infections where they are beneficial and selects substances based on local resistance patterns. Respiratory tract infections typically caused by viruses should not be treated with antibiotics (e.g., rhinitis, bronchitis, sinusitis). Many respiratory infections likely caused by bacteria can be treated with aminopenicillin, sometimes combined with a beta-lactamase inhibitor. Quinolones should be used only as exception for respiratory tract infections, since resistance is rising. For this reason uncomplicated urinary tract infections (cystitis) should be treated with trimethoprim-sulfa-methoxazole (TMP-SMX) instead of quinolones, even though approximately 20% of Escherichia coli are resistant to TMP-SMX. Skin and soft tissue infections are best treated with beta-lactam antibiotics, as long as the community acquired methicillin-resistant strains of S. aureus frequently seen in certain countries remain uncommon here.
Resumo:
This study investigated the contribution of estrogen receptors (ERs) alpha and beta for epicardial coronary artery function, vascular NO bioactivity, and superoxide (O(2)(-)) formation. Porcine coronary rings were suspended in organ chambers and precontracted with prostaglandin F(2alpha) to determine direct effects of the selective ER agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (PPT) or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) or the nonselective ER agonist 17beta-estradiol. Indirect effects on contractility to U46619 and relaxation to bradykinin were assessed and effects on NO, nitrite, and O(2)(-) formation were measured in cultured cells. Within 5 minutes, selective ERalpha activation by PPT, but not 17beta-estradiol or the ERbeta agonist DPN, caused rapid, NO-dependent, and endothelium-dependent relaxation (49+/-5%; P<0.001 versus ethanol). PPT also caused sustained endothelium- and NO-independent vasodilation similar to 17beta-estradiol after 60 minutes (72+/-3%; P<0.001 versus ethanol). DPN induced endothelium-dependent NO-independent relaxation via endothelium-dependent hyperpolarization (40+/-4%; P<0.01 versus ethanol). 17beta-Estradiol and PPT, but not DPN, attenuated the responses to U46619 and bradykinin. All of the ER agonists increased NO and nitrite formation in vascular endothelial but not smooth muscle cells and attenuated vascular smooth muscle cell O(2)(-) formation (P<0.001). ERalpha activation had the most potent effects on both nitrite formation and inhibiting O(2)(-) (P<0.05). These data demonstrate novel and differential mechanisms by which ERalpha and ERbeta activation control coronary artery vasoreactivity in males and females and regulate vascular NO and O(2)(-) formation. The findings indicate that coronary vascular effects of sex hormones differ with regard to affinity to ERalpha and ERbeta, which will contribute to beneficial and adverse effects of hormone replacement therapy.