975 resultados para beta-Adrenergic Receptor Kinases
Resumo:
Single-molecule studies of the conformations of the intact β2 adrenergic receptor were performed in solution. Photon bursts from the fluorescently tagged adrenergic receptor in a micelle were recorded. A photon-burst algorithm and a Poisson time filter were implemented to characterize single molecules diffusing across the probe volume of a confocal microscope. The effects of molecular diffusion and photon number fluctuations were deconvoluted by assuming that Poisson distributions characterize the molecular occupation and photon numbers. Photon-burst size histograms were constructed, from which the source intensity distributions were extracted. Different conformations of the β2 adrenergic receptor cause quenching of the bound fluorophore to different extents and hence produce different photon-burst sizes. An analysis of the photon-burst histograms shows that there are at least two distinct substates for the native adrenergic membrane receptor. This behavior is in contrast to one peak observed for the dye molecule, rhodamine 6G. We test the reliability and robustness of the substate number determination by investigating the application of different binning criteria. Conformational changes associated with agonist binding result in a marked change in the distribution of photon-burst sizes. These studies provide insight into the conformational heterogeneity of G protein-coupled receptors in the presence and absence of a bound agonist.
Resumo:
Transgenic mice were generated with cardiac-specific overexpression of the G protein-coupled receptor kinase-5 (GRK5), a serine/threonine kinase most abundantly expressed in the heart compared with other tissues. Animals overexpressing GRK5 showed marked beta-adrenergic receptor desensitization in both the anesthetized and conscious state compared with nontransgenic control mice, while the contractile response to angiotensin II receptor stimulation was unchanged. In contrast, the angiotensin II-induced rise in contractility was significantly attenuated in transgenic mice overexpressing the beta-adrenergic receptor kinase-1, another member of the GRK family. These data suggest that myocardial overexpression of GRK5 results in selective uncoupling of G protein-coupled receptors and demonstrate that receptor specificity of the GRKs may be important in determining the physiological phenotype.
Resumo:
The role of cAMP subcellular compartmentation in the progress of beta-adrenergic stimulation of cardiac L-type calcium current (ICa) was investigated by using a method based on the use of whole-cell patch-clamp recording and a double capillary for extracellular microperfusion. Frog ventricular cells were sealed at both ends to two patch-clamp pipettes and positioned approximately halfway between the mouths of two capillaries that were separated by a 5-micron thin wall. ICa could be inhibited in one half or the other by omitting Ca2+ from one solution or the other. Exposing half of the cell to a saturating concentration of isoprenaline (ISO, 1 microM) produced a nonmaximal increase in ICa (347 +/- 70%; n = 4) since a subsequent application of ISO to the other part induced an additional effect of nearly similar amplitude to reach a 673 +/- 130% increase. However, half-cell exposure to forskolin (FSK, 30 microM) induced a maximal stimulation of ICa (561 +/- 55%; n = 4). This effect was not the result of adenylyl cyclase activation due to FSK diffusion in the nonexposed part of the cell. To determine the distant effects of ISO and FSK on ICa, the drugs were applied in a zero-Ca solution. Adding Ca2+ to the drug-containing solutions allowed us to record the local effect of the drugs. Dose-response curves for the local and distant effects of ISO and FSK on ICa were used as an index of cAMP concentration changes near the sarcolemma. We found that ISO induced a 40-fold, but FSK induced only a 4-fold, higher cAMP concentration close to the Ca2+ channels, in the part of the cell exposed to the drugs, than it did in the rest of the cell. cAMP compartmentation was greatly reduced after inhibition of phosphodiesterase activity with 3-isobutyl-methylxanthine, suggesting the colocalization of enzymes involved in the cAMP cascade. We conclude that beta-adrenergic receptors are functionally coupled to nearby Ca2+ channels via local elevations of cAMP.
Resumo:
The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors.
Resumo:
Endogenous glucose production rate (EGPR) remains constant when lactate is infused in healthy humans. A decrease of glycogenolysis or of gluconeogenesis from endogenous precursors or a stimulation of glycogen synthesis, may all be involved; This autoregulation does not depend on changes in glucoregulatory hormones. It may be speculated that alterations in basal sympathetic tone may be involved. To gain insights into the mechanisms responsible for autoregulation of EGPR, glycogenolysis and gluconeogenesis were measured, with a novel method (based on the prelabelling of endogenous glycogen with 13C glucose, and determination of hepatic 13C glycogen enrichment from breath 13CO2 and respiratory gas exchanges) in healthy humans infused with lactate or saline. These measurements were performed with or without beta-adrenergic receptor blockade (propranolol). Infusion of lactate increased energy expenditure, but did not increase EGPR; the relative contributions of gluconeogenesis and glycogenolysis to EGPR were also unaltered. This indicates that autoregulation is attained, at least in part, by inhibition of gluconeogenesis from endogenous precursors. beta-adrenergic receptor blockade alone (with propranolol) did not alter EGPR, glycogenolysis or gluconeogenesis. During infusion of lactate, propranolol decreased the thermic effect of lactate but EGPR remained constant. This indicates that alterations of beta-adrenergic activity is not required for autoregulation of EGPR.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chronic obstructive pulmonary disease (COPD) is an extremely common disorder that all primary care physicians should be able to manage. In this review we will define the entities incorporated in COPD and will present various aspects of the diagnoses and treatment. We could not cover every aspect of this broad topic even providing a detailed review of those areas but some facets of therapy like smoking cessation, drug therapy, oxygen therapy, nutrition, and respiratory rehabilitation will be described.
Resumo:
The objective of this report was to summarily review the concept and the prevalence of arterial hypertension in children, its peculiarities and the difficulties in measuring of blood pressure at this age. Considerations of clinical picture, diagnosis, laboratory and drug-induced test (Captopril) were discussed. The authors presented various therapies utilized in hypertension and hypertensive crisis.
Resumo:
Purpose - To evaluate the adverse reactions of fosinopril with other antihypertensives used as monotherapy. Methods - Out-patients (n = 2,568) with diagnostic of mild to moderate hypertension, diastolic blood pressure (DBP) 95-115 mmHg, with no antihypertensive treatment for 15 days, were included to treatment initially with fosinopril (F) 10mg, once daily, for six weeks. After this period, patients with DBP >95mmHg had the dosage, once daily, increased to 20 mg, while the others were maintained with the same dosage for six more weeks. Adverse reactions of 822 patients treated as monotherapy were grouped as absent, musculoskeletal, cardiovascular, cough, gastrointestinal, neurological, genital-urinary dysfunctions and dermatological and compared with 1,568 with F. Monotherapy consist in α-methyldopa (100 patients); β-blocker (129); calcium blocker (106); diuretic (394); and another ACE inhibitors (93). Results - At the end of the period without treatment, the blood pressure (BP), 165 ± 16/105 ± 7 mmHg decreased significantly at 6(th) week to 144 ± 15/91 ± 9 mmHg (p < 0.05 vs week 0) with further lowering to 139 ± 13/86 ± 7 mmHg till the end of 12(th) week. BP response (DBP ≤90 mmHg) was obtained in 89% of the patients with F. Absence of adverse reactions were ≥70% in patients with F compared to other drugs. Conclusion - Fosinopril has demonstrated therapeutic efficacy and less adverse reactions compared to antihypertensives used previously as monotherapy.
Resumo:
The chronic obstructive lung disease is reviewed with emphasys on its epidemiology and risk factors. The diagnosis, clinical aspects pulmonary, functional alterations and laboratorial findings are discussed. The treatment is also reviewed, based on the actual consensus, considering the following classes of approaches: bronchodilators, inhaled β-agonists, corticoids, methilxanthines, prolonged domiciliar-orygen therapy.
Resumo:
Treatment of atherosclerotic renovascular disease is controversial and revascularization is not a beneficial approach to all patients. Conditions as progressive deterioration of renal function, refractory hypertension or accelerated cardiovascular disease, especially recurrent pulmonary edema, could profit from renal angioplasty with stent placement. Surgical revascularization is a good option for patients who will need concomitant surgical corrections of abdominal aortic lesions. Treatment of all other patients must be individualized. Medical therapy is indicated for all patients with atherosclerotic renovascular disease. Observational studies pointed out to the beneficial effect of controlling blood pressure (<130/80 mm Hg), glucose and lipids profile, lifestyle modifications, specific use of platelet antiaggregant therapy, Angiotensin Conversion Enzyme Inhibitors (ACEI) and statins. All others cardiovascular risk factors must be controlled. The evaluation and management of other systemic atherosclerotic vascular lesions is important, especially coronary, carotid and abdominal aortic. This paper presents a review of evidences to rationale the atherosclerotic renovascular disease treatment. © 2008 Bentham Science Publishers Ltd.