980 resultados para beam propagation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By extending a prior model [A. R. Bell, J.R. Davies, S. M. Guerin, Phys. Rev. E 58, 2471 (1998)], the magnetic field generated during the transport of a fast electron beam driven by an ultraintense laser in a solid target is derived analytically and applied to estimate the effect of such field on fast electron propagation through a buried high-Z layer in a lower-Z target. It is found that the effect gets weaker with the increase of the depth of the buried layer, the divergence of the fast electrons, and the laser intensity, indicating that magnetic field effects on the fast electron divergence as measured from K-a X-ray emission may need to be considered for moderate laser intensities. On the basis of the calculations, some considerations are made on how one can mitigate the effect of the magnetic field generated at the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectroscopic capability of the photon scanning tunneling microscope is exploited to study directly the launch and propagation of surface plasmons on thin silver films. Two input beams, of different wavelength, are incident through the prism in a prism-Ag film-air-fibre tip system. Both excite surface plasmons at the Ag-air interface and light of both wavelengths is coupled into the fibre probe via the respective surface plasmon evanescent fields. One laser beam is used for instrument control. The second, or probe beam is tightly focused on the sample, within the area of the unfocused or control beam, giving a well-defined and symmetrical, confined surface plasmon launch site. However, the image at the probe wavelength is highly asymmetrical in section with an exponential tail extending beyond one side of the launch site. This demonstrates in a very direct fashion;the propagation of surface plasmons; a propagation length of similar to 11.7 mu m is measured at a probe wavelength of 543.5 nm. On rough Ag films the excitation of localised scattering centres is also observed in addition to the launch of delocalised surface plasmons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An orthogonal vector approach is proposed for the synthesis of multi-beam directional modulation (DM) transmitters. These systems have the capability of concurrently projecting independent data streams into different specified spatial directions while simultaneously distorting signal constellations in all other directions. Simulated bit error rate (BER) spatial distributions are presented for various multi-beam system configurations in order to illustrate representative examples of physical layer security performance enhancement that can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two Liquid crystal-based reflectarrays that operate at 100 GHz and 125 GHz are presented. The first prototype (100 GHz) is used to validate the modeling and the design procedure proposed for this class of antenna. Experimental validation of the beam scanning is carried out by measuring the received power in a quasi-optical test bench, which is able to rotate the receiver in the horizontal plane. These results are used to design a second prototype antenna (125 GHz) which exhibits 2D beam scanning capabilities with a large bandwidth and scanning range that is sufficient for radar and communications applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction of a stream of high-energy electrons with the background plasma plays an important role in the astrophysical phenomena such as interplanetary and stellar bow shock and Earth's foreshock emission. It is not yet fully understood how electrostatic solitary waves are produced at the bow shock. Interestingly, a population of energetic suprathermal electrons were also found to exist in those environments. Previously, we have studied the properties of negative electrostatic potential solitary structures exist in such a plasma with excess suprathermal electrons. In the present study, we investigate the existence conditions and propagation properties of electron-acoustic solitary waves in a plasma consisting of an electron beam fluid, a cold electron fluid, and hot suprathermal electrons modeled by a kappa-distribution function. The Sagdeev pseudopotential method was used to investigate the occurrence of stationary-profile solitary waves. We have determined how the electron-acoustic soliton characteristics depend on the electron beam parameters. It is found that the existence domain for solitons becomes narrower with an increase in the suprathermality of hot electrons, increasing the beam speed, decreasing the beam-to-cold electron population ratio. These results lead to a better understanding of the formation of electron-acoustic solitary waves observed in those space plasma systems characterized by kappa-distributed electrons and inertial drifting (beam) electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the existence conditions and propagation properties of electron-acoustic solitary waves in a plasma consisting of an electron beam fluid, a cold electron fluid, and a hot suprathermal electron component modeled by a k-distribution function. The Sagdeev pseudopotential method was used to investigate the occurrence of stationary-profile solitary waves. We have determined how the soliton characteristics depend on the electron beam parameters. It is found that the existence domain for solitons becomes narrower with an increase in the suprathermality of hot electrons, increasing the beam speed, and decreasing the beam-to-cold electron population ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis presented here includes the designing of underwater transducer arrays, taking into account the ‘interaction effects’ [30] among the closely packed radiators. Methods of minimizing the ‘interaction effects‘ by modifying the radiating aperture, are investigated. The need for this study arises as it is one of the important peculiar limitations that stands in the way of achieving maximum range of transmission of acoustic signals. Application of the modified array format for the generation of narrow beam low frequency sound waves, through nonlinear interactions, is discussed. Other techniques that can be advantageously exploited in array synthesis are also investigated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central theme of the work presented in this thesis is a careful investigation of the factors influencing the attenuation of laser beam through sea water. The thesis presents a detailed report of the work done by the author on the attenuation studies in sea water and on laser propagation through a turbulent medium. The thesis contains six chapters which are more or less self-contained with separate abstracts and references. The first chapter is divided into two parts. The first part introduces the subject of laser propagation through sea water. It includes a brief description of optical properties of sea water followed by a review of the earlier works on attenuation studies in water. The second part gives the theoretical background of the problem of laser propagation through a turbulent medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present dissertation is devoted to the construction of exact and approximate analytical solutions of the problem of light propagation in highly nonlinear media. It is demonstrated that for many experimental conditions, the problem can be studied under the geometrical optics approximation with a sufficient accuracy. Based on the renormalization group symmetry analysis, exact analytical solutions of the eikonal equations with a higher order refractive index are constructed. A new analytical approach to the construction of approximate solutions is suggested. Based on it, approximate solutions for various boundary conditions, nonlinear refractive indices and dimensions are constructed. Exact analytical expressions for the nonlinear self-focusing positions are deduced. On the basis of the obtained solutions a general rule for the single filament intensity is derived; it is demonstrated that the scaling law (the functional dependence of the self-focusing position on the peak beam intensity) is defined by a form of the nonlinear refractive index but not the beam shape at the boundary. Comparisons of the obtained solutions with results of experiments and numerical simulations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A concrete–steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete–steel interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several new technical developments have been made based on the combined use of the wire beam electrode (WBE), electrochemical noise analysis (ENA) and the scanning reference electrode technique (SRET). These have included: (i) The WBE-R n method- the combined use of the WBE and the noise resistance (Rn) to map the rates and patterns of uniform or localized corrosion; (ii) The WBE-Noise Signatures method- the combined use of the WBE and the noise signature to detect the origination and propagation of localized corrosion; and (iii) The WBE-SRET method- the combined use of the WBE and SRET to investigate localized corrosion from both the metallic and electrolyte phases of a corroding metal surface. This paper presents a brief review on these novel methods and their applications for detecting general and localized corrosion, for mapping the rates of corrosion, and for studying corrosion inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenolic resins when heat treated in inert atmosphere up to 1000 degreesC become glassy polymeric carbon (GPC), a chemically inert and biocompatible material useful for medical applications, such as in the manufacture of heart valves and prosthetic devices. In earlier work we have shown that ion bombardment can modify the surface of GPC, increasing its roughness. The enhanced roughness, which depends on the species, energy and fluence of the ion beam, can improve the biocompatibility of GPC prosthetic artifacts. In this work, ion bombardment was used to make a layer of implanted ions under the surface to avoid the propagation of microcracks in regions where cardiac valves should have pins for fixation of the leaflets. GPC samples prepared at 700 and 1500 degreesC were bombarded with ions of silicon. carbon, oxygen and gold at energies of 5, 6, 8 and 10 MeV, respectively, and fluences between 1.0 x 10(13) and 1.0 x 10(16) ions/cm(2). Nanoindentation hardness characterization was used to compare bombarded with non-bombarded samples prepared at temperatures up to 2500 degreesC. The results with samples not bombarded showed that the hardness of GPC increases strongly with the heat treatment temperature. Comparison with ion bombarded samples shows that the hardness changes according to the ion used, the energy and fluence. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glassy polymeric carbon (GPC) is a useful material for medical applications due to its chemical inertness and biocompatible characteristics. Mitral and aortic and hydrocephalic valves are examples of GPC prosthetic devices that have been fabricated and commercialized in Brazil. In this work, ion beam was used to improve the mechanical characteristics of GPC surface and therefore to avoid the propagation of microcracks where the cardiac valves are more fragile. A control group of phenolic resin samples heat-treated at 300, 400, 700, 1000, 1500, and 2500 degrees C was characterized by measuring their hardness and Young's reduced elastic modulus with the depth of indentation. The control group was compared to results obtained with samples heat-treated at 700, 1000, and 1500 degrees C and bombarded with energetic ions of silicon, carbon, oxygen, and gold at energies of 5, 6, 8, and 10 MeV, respectively, with fluences between 10x10(13) and 10x10(16) ions/cm(2). GPC nonbombarded samples showed that hardness depends on the heat treatment temperature (HTT), with a maximum hardness for heat treatment at 1000 degrees C. The comparison between the control group and bombarded group also showed that hardness, after bombardment, had a greater increase for samples prepared at 700 degrees C than for samples prepared at higher temperatures. The Young's elastic modulus presents an exponential relationship with depth. The parameters obtained by fitting depend on the HTT and on the ion used in the bombardment more than on energy and fluence. The hardness results show clearly that bombardment can promote carbonization, increase the linkage between the chains of the polymeric material, and promote recombination of broken bonds in lateral groups that are more numerous for samples heat-treated at 700 degrees C. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa na solução de problemas de modelagem e imageamento sísmicos. Nesta Tese, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB). As principais características que diferenciam a migração KGB, durante a realização do primeiro empilhamento, de outros métodos de migração que também utilizam a teoria dos Feixes Gaussianos, são o uso da primeira zona de Fresnel projetada para limitar a largura do feixe e a utilização, no empilhamento do feixe, de uma aproximação de segunda ordem do tempo de trânsito de reflexão. Como exemplos são apresentadas aplicações a dados sintéticos para modelos bidimensionais (2-D) e tridimensionais (3-D), correspondentes aos modelos Marmousi e domo de sal da SEG/EAGE, respectivamente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa no imageamento sísmicos. Nesta dissertação, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB).Afim de comparar os métodos Kirchhoff e KGB com respeito à sensibilidade em relação ao comprimento da discretização, aplicamos no conjunto de dados conhecido como Marmousi 2-D quatro grids de velocidade, ou seja, 60m, 80m 100m e 150m. Como resultado, temos que ambos os métodos apresentam uma imagem muito melhor para o menor intervalo de discretização da malha de velocidade. O espectro de amplitude das seções migradas nos fornece o conteúdo de frequência espacial das seções das imagens obtidas.