962 resultados para batch co-cultures
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Influence of the combination of probiotic cultures during fermentation and storage of fermented milk
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The degradation of polychlorinated biphenyls (PCBs) was investigated under fermentativemethanogenic conditions for up to 60 days in the presence of anaerobic biomass from a full-scale UASB reactor. The low methane yields in the PCBs-spiked batch reactors suggested that the biomass had an inhibitory effect on the methanogenic community. Reactors containing PCBs and co-substrates (ethanol/ sodium formate) exhibited substantial PCB reductions from 0.7 to 0.2 mg mL-1 . For the Bacteria domain, the PCBs-spiked reactors were grouped with the PCB-free reactors with a similarity of 55 %, which suggested the selection of a specific population in the presence of PCBs. Three genera of bacteria were found exclusively in the PCB-spiked reactors and were identified using pyrosequencing analysis, Sedimentibacter, Tissierela and Fusibacter. Interestingly, the Sedimentibacter, which was previously correlated with the reductive dechlorination of PCBs, had the highest relative abundance in the RCS-PCB (7.4 %) and RCS-PCB-PF (12.4 %) reactors. Thus, the anaerobic sludge from the UASB reactor contains bacteria from the Firmicutes phylum that are capable of degrading PCBs.
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Blood cell lymphocyte chromosomes from untreated (UT) and clinically-cured (CC) patients with paracoccidioidomycosis and from healthy (control) people (CO) were studied. The frequency of aneuploid cells in the UT patients was higher than in the CC and CO individuals. The frequency of metaphase cells with premature centromere division was significantly higher in the UT than in the CC and CO group. No structural aberration and no statistically significant difference in the frequency of polyploidy was observed in the three groups studied. Our findings are indicative of an aneugenic (aneuploidy-inducing) action of infection by Paracoccidioides brasiliensis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
The objective of this work for evaluating the potential of biogas and methane productions and still and reductions in levels of total solids (TS), volatile solids (VS) and neutral detergent fiber (NDF) of the co-digestion anaerobic digestion in digesters fed with swine manure plus disposal of oil and lyophilized microorganisms. For assay development substrates were prepared containing 4% TS, consisting of swine manure, disposal oil (the proportions 8, 10 and 12% oil content in relation to the substrate TS), lyophilized microorganisms (Biol-2000 ® - concentrations of 10 g/m3 and 15 g/m3 ), water for dilution of this waste and inoculum for batch digesters supply. There was no significant difference with respect to reductions in TS, VS and NDF constituents, providing very significant reductions in average 54.14; 62.79 and 49.16% respectively. Regarding the potential of biogas production, the highest yields occurred in digesters supplied with 10% oil and 15 g/m3 of Biol®, being 0.43 and 0.54 L of biogas per kg of TS and VS added, respectively, similar results were found when assessed the potential for methane production, with higher values (0.22 and 0.27 L of methane per kg of TS added and VS, respectively) obitidos the same treatment. The inclusion of 15 g/m3 in Biol® substrate composition containing swine manure and 10% of oil improves the yields of biogas and methane.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The organic acids profile, sugar metabolism and biomass growth of Streptococcus thermophilus (St) and Bifidobacterium lactis (BI) have been studied in pure cultures or binary co-culture (St-BI) in skim milk either containing 40 mg/g of inulin or not. With inulin, the time required by St. BI and St-BI to complete fermentation (i.e., when the pH reached 4.5) was about 14, 8 and 49% shorter than without inulin, respectively. This prebiotic also enhanced the levels of lactic and acetic acids and volatile compounds, showing a positive synbiotic effect between pre- and probiotics. In particular, the St-BI co-culture showed final concentrations of both microorganisms about 15 and 38% higher than in their respective pure cultures, thus highlighting a clear synergistic effect between these microorganisms due to mutual interactions. In addition, the well-known bifidogenic effect of inulin was confirmed. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Goat breeding in Sardinia constitutes an important source of income for farming and shepherding activities. In this study 170 LAB strains were isolated from Sardinian goat's milk and tested for bacteriocins production against several food-borne pathogenic microorganisms. Four isolates (SD1, SD2, SD3 and SD4) were selected for their effective inhibition on Listeria monocytogenes. The strains were classified as members of Enterococcus genus, according to their biochemical and physiological characteristics, and then genetically identified as Enterococcus faecium. In MRS broth at 37 degrees C, bacteriocins SD1 and SD2 were produced at much higher levels (51200 AU/ml) compared to bacteriocin SD3 (3200 AU/ml) and bacteriocin SD4 (800 AU/ml). Their peptides were inactivated by proteolytic enzymes, but not when treated with alpha-amylase, catalase and lipase. The four bacteriocins remained stable at pH from 2.0 to 12.0, after exposure to 100 degrees C for 120 min and were not affected by the presence of surfactants and salts (N-Laourylsarcosine, NaCl, SDS, Triton X-100, Tween 20, Tween 80 and urea). Their molecular size was determined to be approximately 5 kDa by tricine-SDS-PAGE. Since the strains exhibited a strong antimicrobial activity against 21 L monocytogenes strains and 6 Salmonella spp. isolates, they should be considered as potential bio-preservatives cultures for fermented food productions. Moreover, due to their technological features, the four strains could be taken in account for using as adjunct NSLAB (non-starter lactic acid bacteria) rather than as starter culture. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Batch combustion of fixed beds of coal, bagasse and blends thereof took place in a pre-heated two-stage electric laboratory furnace, under high-heating rates. The average input fuel/air equivalence ratios were similar for all fuels. The primary and secondary furnace temperatures were varied from 800 degrees C to 1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on the emissions from the two fuels were assessed. Furnace effluents were analyzed for carbon dioxide and for products of incomplete combustion (PIC) including CO, volatile and semi-volatile hydrocarbons, as well as particulate matter. Results showed that whereas CO2 was generated during both the observed sequential volatile matter and char combustion phases of the fuels, PICs were only generated during the volatile matter combustion phase. CO2 emissions were the highest from coal, whereas CO and other PIC emissions were the highest from bagasse. Under this particular combustion configuration, combustion of the volatile matter of the blends resulted in lower yields of PIC, than combustion of the volatiles of the neat fuels. Though CO and unburned hydrocarbons from coal as well as from the blends did not exhibit a clear trend with furnace temperature, such emissions from bagasse clearly increased with temperature. The presence of the secondary furnace (afterburner) typically reduced PIC, by promoting further oxidation of the primary furnace effluents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
CO((NH2)-N-15)(2) enriched with the stable isotope N-15 was synthesized based on a reaction involving CO, (NH3)-N-15, and S in the presence of CH3OH. The method differs from the industrial method; a stainless steel reactor internally lined with polytetrafluoroethylene (PTFE) was used in a discontinuous process under low pressure and temperature. The yield of the synthesis was evaluated as a function of the parameters: the amount of reagents, reaction time, addition of H2S, liquid solution and reaction temperature. The results showed that under optimum conditions (1.36, 4.01, and 4.48 g of (NH3)-N-15, CO, and S, respectively, 40 ml CH3OH, 40 mg H2S, 100 degrees C and 120 min of reaction) 1.82 g (yield 76.5%) of the compound was obtained per batch. The synthesized CO((NH2)-N-15)(2) contained 46.2% N, 0.55% biuret, melting point of 132.55 degrees C and did not exhibit isotopic fractionation. The production cost of CO((NH2)-N-15)(2) with 90.0 at. % N-15 was US$ 238.60 per gram.
Resumo:
Bioenergetic analysis may be applied in order to predict microbial growth yields, based on the Gibbs energy dissipation and mass conservation principles of the overall growth reaction. The bioenergetics of the photoautotrophic growth of the cyanobacterium Arthrospira (Spirulina) platensis was investigated in different bioreactor configurations (tubular photobioreactor and open ponds) using different nitrogen sources (nitrate and urea) and under different light intensity conditions to determine the best growing conditions in terms of Gibbs energy dissipation, number of photons to sustain cell growth and phototrophic energy yields distribution in relation to the ATP and NADPH formation, and release of heat. Although an increase in the light intensity increased the Gibbs energy dissipated for cell growth and maintenance with both nitrogen sources, it did not exert any appreciable influence on the moles of photons absorbed by the system to produce one C-mol biomass. On the other hand, both bioenergetic parameters were higher in cultures with nitrate than with urea, likely because of the higher energy requirements needed to reduce the former nitrogen source to ammonia. They appreciably increased also when open ponds were substituted by the tubular photobioreactor, where a more efficient light distribution ensured a remarkably higher cell mass concentration. The estimated percentages of the energy absorbed by the cell showed that, compared with nitrate, the use of urea as nitrogen source allowed the system to address higher energy fractions to ATP production and light fixation by the photosynthetic apparatus, as well as a lower fraction released as heat. The best energy yields values on Gibbs energy necessary for cell growth and maintenance were achieved in up to 4-5 days of cultivation, indicating that it would be the optimum range to maintain cell growth. Thanks to this better bioenergetic situation, urea appears to be a quite promising low-cost, alternative nitrogen source for Arthrospira platensis cultures in photobioreactors. (C) 2011 Elsevier Ltd. All rights reserved.