983 resultados para bacterial genes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA), endonuclease III (nth), O6-methylguanine-DNA methyltransferase (ada gene), photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular aspects of the C. crescentus among other known DNA repair pathways. The observed differences enlarge what is known for DNA repair in the Bacterial world, and provide a useful framework for further experimental studies in this organism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Microbiological studies frequently involve exchanges of strains between laboratories and/or stock centers. The integrity of exchanged strains is vital for archival reasons and to ensure reproducible experimental results. For at least 50 years, one of the most common means of shipping bacteria was by inoculating bacterial samples in agar stabs. Long-term cultures in stabs exhibit genetic instabilities and one common instability is in rpoS. The sigma factor RpoS accumulates in response to several stresses and in the stationary phase. One consequence of RpoS accumulation is the competition with the vegetative sigma factor σ70. Under nutrient limiting conditions mutations in rpoS or in genes that regulate its expression tend to accumulate. Here, we investigate whether short-term storage and mailing of cultures in stabs results in genetic heterogeneity. Results We found that samples of the E. coli K-12 strain MC4100TF exchanged on three separate occasions by mail between our laboratories became heterogeneous. Reconstruction studies indicated that LB-stabs exhibited mutations previously found in GASP studies in stationary phase LB broth. At least 40% of reconstructed stocks and an equivalent proportion of actually mailed stock contained these mutations. Mutants with low RpoS levels emerged within 7 days of incubation in the stabs. Sequence analysis of ten of these segregants revealed that they harboured each of three different rpoS mutations. These mutants displayed the classical phenotypes of bacteria lacking rpoS. The genetic stability of MC4100TF was also tested in filter disks embedded in glycerol. Under these conditions, GASP mutants emerge only after a 3-week period. We also confirm that the intrinsic high RpoS level in MC4100TF is mainly due to the presence of an IS1 insertion in rssB. Conclusions Given that many E. coli strains contain high RpoS levels similar to MC4100TF, the integrity of such strains during transfers and storage is questionable. Variations in important collections may be due to storage-transfer related issues. These results raise important questions on the integrity of bacterial archives and transferred strains, explain variation like in the ECOR collection between laboratories and indicate a need for the development of better methods of strain transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group B Streptococcus (GBS), in its transition from commensal to pathogen, will encounter diverse host environments and thus require coordinately controlling its transcriptional responses to these changes. This work was aimed at better understanding the role of two component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knock-out strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1-3% of the genome. Interestingly, two sugar phosphotransferase systems appeared differently regulated in the knock-out mutant of TCS-16, suggesting an involvement in monitoring carbon source availability. High throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16 with concomitant dramatic up-regulation of the adjacent operon encoding a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization and impaired growth/survival in the presence of vaginal mucoid components. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and also provide experimental evidence for TCS-17/RgfAC involvement in virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naphthenic acids (NAs) are an important group of organic pollutants mainly found in hydrocarbon deposits. Although these compounds are toxic, recalcitrant, and persistent in the environment, we are just learning the diversity of microbial communities involved in NAs- degradation and the mechanisms by which NAs are biodegraded. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. Nevertheless, little is still known about their biodegradability. The present PhD Thesis’s work is aimed to study the biodegradation of simple model NAs using bacteria strains belonging to the Rhodococcus genus. In particular, Rh. sp. BCP1 and Rh. opacus R7 were able to utilize NAs such as cyclohexane carboxylic acid and cyclopentane carboxylic acid as the sole carbon and energy sources, even at concentrations up to 1000 mg/L. The presence of either substituents or longer carboxylic acid chains attached to the cyclohexane ring negatively affected the growth by pure bacterial cultures. Moreover, BCP1 and R7 cells incubated in the presence of CHCA or CPCA show a general increase of saturated and methyl-substituted fatty acids in their membrane, while the cis-mono-unsaturated ones decrease, as compared to glucose-grown cells. The observed lipid molecules modification during the growth in the presence of NAs is suggested as a possible mechanism to decrease the fluidity of the cell membrane to counteract NAs toxicity. In order to further evaluate this toxic effect on cell features, the morphological changes of BCP1 and R7 cells were also assessed through Transmission Electron Microscopy (TEM), revealing interesting ultrastructural changes. The induction of putative genes, and the construction of a random transposon mutagenesis library were also carried out to reveal the mechanisms by which these Rhodococcus strains can degrade toxic compounds such as NAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis. The patient genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. A higher frequency (P<0.05) of APE1 Glu allele in bacterial meningitis (BM) and aseptic meningitis (AM) patients was observed. The genotypes Asn/Asn in control group and Asn/Glu in BM group was also higher. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs is significantly higher in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 Glu allele or OGG1 Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1 Asn148Glu, OGG1 Ser326Cys or PARP-1 Val762Ala. Moreover, reduction in the levels of IL-6, IL-1Ra, MCP-1/CCL2 and IL-8/CXCL8 was observed in the presence of APE1 Glu allele in BM patients. In conclusion, we obtained indications of an effect of SNPs in DNA repair genes on the regulation of immune response in meningitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories "inflammation", "growth", "apoptosis" and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on the endocrine role of estrogens has focused on the reproductive system, while other potential target systems have been less studied. Here, we investigated the possible immunomodulating role of 17beta-estradiol (E2) using rainbow trout (Oncorhynchus mykiss) as a model. The aims of the study were to examine a) whether estrogens can modulate immune gene transcription levels, and b) whether this has functional implications for the resistance of trout towards pathogens. Trout were reared from fertilization until 6 months of age under (1) control conditions, (2) short-term E2-treatment (6-month-old juveniles were fed a diet containing 20 mg E2/kg for 2 weeks), or c) long-term E2-treatment (twice a 2-h-bath-exposure of trout embryos to 400 mug 17beta-estradiol (E2)/L, followed by rearing on the E2-spiked diet from start-feeding until 6 months of age). Analysis of plasma estrogen levels indicated that the internal estrogen concentrations of E2-exposed fish were within the physiological range and analysis of hepatic vitellogenin mRNA levels indicated that the E2 administration was effective in activating the endogenous estrogen receptor pathway. However, expression levels of the hepatic complement components C3-1, C3-3, and Factor H were not affected by E2-treatment. In a next step, 6-month-old juveniles were challenged with pathogenic bacteria (Yersinia ruckeri). In control fish, this bacterial infection resulted in significant up-regulation of the mRNA levels of hepatic complement genes (C3-1, C3-3, Factor B, Factor H), while E2-treated fish showed no or significantly lower up-regulation of the complement gene transcription levels. Apparently, the E2-treated trout had a lower capacity to activate their immune system to defend against the bacterial infection. This interpretation is corroborated by the finding that survival of E2-treated fish under bacterial challenge was significantly lower than in the control group. In conclusion, the results from this study suggest that estrogens are able to modulate immune parameters of trout with functional consequences on their ability to cope with pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytogenetic mapping of the arctic fox and the Chinese raccoon dog were performed using a set of canine probes derived from the Bacterial Artificial Chromosome (BAC) library. Altogether, 10 BAC clones containing sequences of selected genes (PAX3, HBB, ATP2A2, TECTA, PIT1, ABCA4, ESR2, TPH1, HTR2A, MAOA) and microsatellites were mapped by fluorescence in situ hybridization (FISH) experiments to chromosomes of the canids studied. At present, the cytogenetic map on the arctic fox and Chinese raccoon dog consists of 45 loci each. Chromosomal localization of the BAC clones was in agreement with data obtained by earlier independent comparative chromosome painting. However, two events of telomere-to-centromere inversions were tentatively identified while compared with assignments in the dog karyotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we showed that the in vitro lag phase correlates with the pneumococcal serotype. This study investigated the role of capsule genes in bacterial growth using strain D39. Deletion of the entire capsule operon induced a significantly prolonged lag phase in Todd Hewitt broth (P=0.0002). However, partial deletions showed a different influence on the lag phase. Supplementation of media with 5% fetal bovine serum restored normal growth, at least partially, in mutants with a prolonged lag phase. Therefore, pneumococcal capsule gene products influence bacterial growth in vitro in strain D39.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phylogenies of housekeeping gene and 16S rRNA gene sequences were compared to improve the classification of the bacterial family Pasteurellaceae and knowledge of the evolutionary relationships of its members. Deduced partial protein sequences of the housekeeping genes atpD, infB and rpoB were compared in 28, 36 and 28 representative taxa of the Pasteurellaceae, respectively. The monophyly of representatives of the genus Gallibacterium was recognized by analysis of all housekeeping genes, while members of Mannheimia, Actinobacillus sensu stricto and the core group of Pasteurella sensu stricto formed monophyletic groups with two out of three housekeeping genes. Representatives of Mannheimia, Actinobacillus sensu stricto, [Haemophilus] ducreyi and [Pasteurella] trehalosi formed a monophyletic unit by analysis of all three housekeeping genes, which was in contrast to the 16S rRNA gene-derived phylogeny, where these taxa occurred at separate positions in the phylogenetic tree. Representatives of the Rodent, Avian and Aphrophilus-Haemophilus 16S rRNA gene groups were weakly supported by phylogenetic analysis of housekeeping genes. Phylogenies derived by comparison of the housekeeping genes diverged significantly from the 16S rRNA gene-derived phylogeny as evaluated by the likelihood ratio test. A low degree of congruence was also observed between the individual housekeeping gene-derived phylogenies. Estimates on speciation derived from 16S rRNA and housekeeping gene sequence comparisons resulted in quite different evolutionary scenarios for members of the Pasteurellaceae. The phylogeny based on the housekeeping genes supported observed host associations between Mannheimia, Actinobacillus sensu stricto and [Pasteurella] trehalosi and animals with paired hooves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equine Actinobacillus species were analysed phylogenetically by 16S rRNA gene (rrs) sequencing focusing on the species Actinobacillus equuli, which has recently been subdivided into the non-haemolytic A. equuli subsp. equuli and the haemolytic A. equuli subsp. haemolyticus. In parallel we determined the profile for RTX toxin genes of the sample of strains by PCR testing for the presence of the A. equuli haemolysin gene aqx, and the toxin genes apxI, apxII, apxIII and apxIV, which are known in porcine pathogens such as Actinobacillus pleuropneumoniae and Actinobacillus suis. The rrs-based phylogenetic analysis revealed two distinct subclusters containing both A. equuli subsp. equuli and A. equuli subsp. haemolyticus distributed through both subclusters with no correlation to taxonomic classification. Within one of the rrs-based subclusters containing the A. equuli subsp. equuli type strain, clustered as well the porcine Actinobacillus suis strains. This latter is known to be also phenotypically closely related to A. equuli. The toxin gene analysis revealed that all A. equuli subsp. haemolyticus strains from both rrs subclusters specifically contained the aqx gene while the A. suis strains harboured the genes apxI and apxII. The aqx gene was found to be specific for A. equuli subsp. haemolyticus, since A. equuli subsp. equuli contained no aqx nor any of the other RTX genes tested. The specificity of aqx for the haemolytic equine A. equuli and ApxI and ApxII for the porcine A. suis indicates a role of these RTX toxins in host species predilection of the two closely related species of bacterial pathogens and allows PCR based diagnostic differentiation of the two.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen that causes acute and chronic diarrhea among children, human immunodeficiency virus-infected patients, and travelers to developing regions of the world. The pathogenesis of EAEC strains involves the production of biofilm. In this study, we determined the association between presence of putative EAEC virulence genes and biofilm formation in 57 EAEC isolates (as defined by HEp-2 adherence) from travelers with diarrhea and in 18 EAEC isolates from travelers without diarrhea. Twelve nondiarrheagenic E. coli isolates from healthy travelers were used as controls. Biofilm formation was measured by using a microtiter plate assay with the crystal violet staining method, and the presence of the putative EAEC virulence genes aap, aatA, aggR, astA, irp2, pet, set1A, and shf was determined by PCR. EAEC isolates were more likely to produce biofilm than nondiarrheagenic E. coli isolates (P = 0.027), and the production of biofilm was associated with the virulence genes aggR, set1A, aatA, and irp2, which were found in 16 (40%), 17 (43%), 10 (25%), and 27 (68%) of the biofilm producers versus only 4 (11%), 6 (6%), 2 (6%), and 15 (43%) in non-biofilm producers (P = 0.008 for aggR, P = 0.0004 for set1A, P = 0.029 for aatA, and P = 0.04 for irp2). Although the proportion of EAEC isolates producing biofilm in patients with diarrhea (51%) was similar to that in patients without diarrhea (61%), biofilm production was related to the carriage of aggR (P = 0.015), set1A (P = 0.001), and aatA (P = 0.025). Since aggR is a master regulator of EAEC, the presence of aap (P = 0.004), astA (P = 0.001), irp2 (P = 0.0006), pet (P = 0.002), and set1A (P = 0.014) in an aggR versus an aggR-lacking background was investigated and was also found to be associated with biofilm production. This study suggests that biofilm formation is a common phenomenon among EAEC isolates derived from travelers with or without diarrhea and that multiple genes associated with biofilm formation are regulated by aggR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).