999 resultados para axiomatic characterization
Resumo:
The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.
Resumo:
Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.
Resumo:
This article presents a method for making highly porous biodegradable scaffold that may ultimately be used for tissue engineering. Poly(L-lactic-co-1-caprolactone) acid (70:30) (PLCL) scaffold was produced using the solvent casting/leaching out method, which entails dissolving the polymer and adding a porogen that is then leached out by immersing the scaffold in distillated water. Tensile tests were performed for three types of scaffolds, namely pre-wetted, dried, and UV-irradiated scaffolds and their mechanical properties were measured. The prewetted PLCL scaffold possessed a modulus of elasticity 0.92+0.09 MPa, a tensile strength of 0.12+0.03 MPa and an ultimate strain of 23+5.3%. No significant differences in the modulus elasticity, tensile strength, nor ultimate strain were found between the pre-wetted, dried, and UV irradiated scaffolds. The PLCL scaffold was seeded by human fibroblasts in order to evaluate its biocompatibility by Alamar bluew assays. After 10 days of culture, the scaffolds showed good biocompatibility and allowed cell proliferation. However, the fibroblasts stayed essentially at the surface. This study shows the possibility to use the PLCL scaffold in dynamic mechanical conditions for tissue engineering
Resumo:
Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.
Resumo:
In this paper, we have investigated on the natural wendwilsonite mineral with the formulae Ca2(Mg,Co)(AsO4)2⋅2(H2O). Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the wendwilsonite arsenate mineral. A comparison is made with the roselite mineral group with formula Ca2B(AsO4)2⋅2H2O (where B may be Co, Fe2+, Mg, Mn, Ni, Zn). The Raman spectra of the arsenate related to tetrahedral arsenate clusters with stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. The Raman arsenate (AsO4)3− stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists of multiple to tetrahedral (AsO4)3− clusters with antisymmetric stretching vibrations observed indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm−1 are assigned to ν4 bending modes. Multiple bands in the 350–300 cm−1 region assigned to ν2 bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for wendwilsonite found at 3332, 3119 and 3001 cm−1 are assigned to OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75 Å are estimated. Vibrational spectra enable the molecular structure of the wendwilsonite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.
Resumo:
Natural single-crystal specimens of althausite from Brazil, with general formula Mg2(PO4)(OH,F,O) were investigated by Raman and infrared spectroscopy. The mineral occurs as a secondary product in granitic pegmatites. The Raman spectrum of althausite is characterized by bands at 1020, 1033 and 1044 cm-1, assigned to ν1 symmetric stretching modes of the HOPO33- and PO43- units. Raman bands at around 1067, 1083 and 1138 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 575, 589 and 606 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. Raman bands at 439, 461, 475 and 503 cm-1 are attributed to the ν2 PO4 and H2PO4 bending modes. Strong Raman bands observed at 312, 346 cm-1 with shoulder bands at 361, 381 and 398 cm-1 are assigned to MgO stretching vibrations. No bands which are attributable to water were found. Vibrational spectroscopy enables aspects of the molecular structure of althausite to be assessed.
Resumo:
We have studied the mineral olmiite CaMn\[SiO3(OH)](OH) which forms a series with its calcium analogue poldevaartite CaCa\[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis , Raman and infrared spectroscopy. Chemical analysis shows the mineral is pure and contains only calcium and manganese in the formula. Thermogravimetric analysis proves the mineral decomposes at 502°C with a mass loss of 8.8% compared with the theoretical mass loss of 8.737%. A strong Raman band at 853 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations.Two intense Raman bands observed at 3511 and 3550 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of olmiite.
Resumo:
We have studied the mineral hydroboracite CaMg[B3O4(OH)3]2∙3H2O using electron microscopy and vibrational spectroscopy. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm-1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1039 cm-1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm-1 are attributed to the BOH in-plane bending modes. Raman bands at 825 and 925 cm-1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The sharp Raman peak at 925 cm-1 is from the 11-B component such a mode, then it should have a smaller 10-B satellite near (1.03)x(925) = 952 cm-1, and indeed a small peak at 955 is observed. Four sharp Raman bands observed at 3371, 3507, 3563 and 3632 cm-1 are attributed to the stretching vibrations of hydroxyl units. The broad Raman bands at 3076, 3138, 3255, 3384 and 3551 cm-1 are assigned to water stretching vibrations. Infrared bands at 3367, 3505, 3559 and 3631 cm-1are assigned to the stretching vibration of the hydroxyl units. Broad infrared bands at 3072 and 3254 cm-1 are assigned to water stretching vibrations. Infrared bands at 1318, 1349, 1371, 1383 cm-1 are assigned to the antisymmetric stretching vibrations of trigonal boron
Resumo:
Synthesis of MgC2O4⋅2H2O nano particles was carried out by thermal double decomposition of solutions of oxalic acid dihydrate (C2H2O4⋅2H2O) and Mg(OAc)2⋅4H2O employing CATA-2R microwave reactor. Structural elucidation was carried out by employing X-ray diffraction (XRD), particle size and shape were studied by transmission electron microscopy (TEM) and nature of bonding was investigated by optical absorption and near-infrared (NIR) spectral studies. The powder resulting from this method is pure and possesses distorted rhombic octahedral structure. The synthesized nano rod is 80 nm in diameter and 549 nm in length.
Resumo:
A library containing approximately 40,000 small RNA sequences was constructed for Brassica napus. Analysis of 3025 sequences obtained from this library resulted in the identification of 11 conserved miRNA families, which were validated by secondary structure prediction using surrounding sequences in the Brassica genome. Two 21 nt small RNA sequences reside within the arm of a pre-miRNA like stem-loop structure, making them likely candidates for novel non-conserved miRNAs in B. napus. Most of the conserved miRNAs were expressed at similar levels in a F1 hybrid B. napus line and its four double haploid progeny that showed marked variations in phenotypes, but many were differentially expressed between B. napus and Arabidopsis. The miR169 family was expressed at high levels in young leaves and stems, but was undetectable in roots and mature leaves, suggesting that miR169 expression is developmentally regulated in B. napus. © 2007 Federation of European Biochemical Societies.
Resumo:
Human lymphatic vascular malformations (LMs), also known as cystic hygromas or lymphangioma, consist of multiple lymphatic endothelial cell-lined lymph-containing cysts. No animal model of this disease exists. To develop a mouse xenograft model of human LM, CD34NegCD31Pos LM lymphatic endothelial cells (LM-LEC) were isolated from surgical specimens and compared to foreskin CD34NegCD31Pos lymphatic endothelial cells (LECs). Cells were implanted into a mouse tissue engineering model for 1, 2 and 4 weeks. In vitro LM-LECs showed increased proliferation and survival under starvation conditions (P < 0.0005 at 48 h, two-way ANOVA), increased migration (P < 0.001, two-way ANOVA) and formed fewer (P = 0.029, independent samples t test), shorter tubes (P = 0.029, independent samples t test) than foreskin LECs. In vivo LM-LECs implanted into a Matrigel™-containing mouse chamber model assembled to develop vessels with dilated cystic lumens lined with flat endothelium, morphology similar to that of clinical LMs. Human foreskin LECs failed to survive implantation. In LM-LEC implanted chambers the percent volume of podoplaninPos vessels was 1.18 ± 2.24 % at 1 week, 6.34 ± 2.68 % at 2 weeks and increasing to 7.67 ± 3.60 % at 4 weeks. In conclusion, the significantly increased proliferation, migration, resistance to apoptosis and decreased tubulogenesis of LM-LECs observed in vitro is likely to account for their survival and assembly into stable LM-like structures when implanted into a mouse vascularised chamber model. This in vivo xenograft model will provide the basis of future studies of LM biology and testing of potential pharmacological interventions for patients with lymphatic malformations.
Resumo:
Three cohorts of farmed yellowtail kingfish (Seriola lalandi) from South Australia were examined for Chlamydia-like organisms associated with epitheliocystis. To characterize the bacteria, 38 gill samples were processed for histopathology, electron microscopy, and 16S rRNA amplification, sequencing, and phylogenetic analysis. Microscopically, the presence of membrane-enclosed cysts was observed within the gill lamellae. Also observed was hyperplasia of the epithelial cells with cytoplasmic vacuolization and fusion of the gill lamellae. Transmission electron microscopy revealed morphological features of the reticulate and intermediate bodies typical of members of the order Chlamydiales. A novel 1,393-bp 16S chlamydial rRNA sequence was amplified from gill DNA extracted from fish in all cohorts over a 3-year period that corresponded to the 16S rRNA sequence amplified directly from laser-dissected cysts. This sequence was only 87% similar to the reported "Candidatus Piscichlamydia salmonis" (AY462244) from Atlantic salmon and Arctic charr. Phylogenetic analysis of this sequence against 35 Chlamydia and Chlamydia-like bacteria revealed that this novel bacterium belongs to an undescribed family lineage in the order Chlamydiales. Based on these observations, we propose this bacterium of yellowtail kingfish be known as "Candidatus Parilichlamydia carangidicola" and that the new family be known as "Candidatus Parilichlamydiaceae."
Resumo:
Histological analysis of gill samples taken from individuals of Latris lineata reared in aquaculture in Tasmania, Australia, and those sampled from the wild revealed the presence of epitheliocystis-like basophilic inclusions. Subsequent morphological, in situ hybridization, and molecular analyses were performed to confirm the presence of this disease and discovered a Chlamydia-like organism associated with this condition, and the criteria set by Fredericks and Relman's postulates were used to establish disease causation. Three distinct 16S rRNA genotypes were sequenced from 16 fish, and phylogenetic analyses of the nearly full-length 16S rRNA sequences generated for this bacterial agent indicated that they were nearly identical novel members of the order Chlamydiales. This new taxon formed a well-supported clade with "Candidatus Parilichlamydia carangidicola" from the yellowtail kingfish (Seriola lalandi). On the basis of sequence divergence over the 16S rRNA region relative to all other members of the order Chlamydiales, a new genus and species are proposed here for the Chlamydia-like bacterium from L. lineata, i.e., "Candidatus Similichlamydia latridicola" gen. nov., sp. nov.
Resumo:
The ultraviolet photodissociation of gas-phase N-methylpyridinium ions is studied at room temperature using laser photodissociation mass spectrometry and structurally diagnostic ion-molecule reaction kinetics. The C5H5N-CH3+ (m/z 94), C5H5N-CD3+ (m/z 97), and C5D5N-CH3+(m/z 99) isotopologues are investigated, and it is shown that the N-methylpyridinium ion photodissociates by the loss of methane in the 36 000 - 43 000 cm(-1) (280 - 230 nm) region. The dissociation likely occurs on the ground state surface following internal conversion from the SI state. For each isotopologue, by monitoring the photofragmentation yield as a function of photon wavenumber, a broad vibronically featured band is recorded with origin (0-0) transitions assigned at 38 130, 38 140 and 38 320 cm(-1) for C5H5N-CH3+ C5H5N-CD3+ and C5D5N-CH3+, respectively. With the aid of quantum chemical calculations (CASSCF(6,6)/aug-cc-pVDZ), most of the observed vibronic detail is assigned to two in-plane ring deformation modes. Finally, using ion-molecule reactions, the methane coproduct at m/z 78 is confirmed as a 2-pyridinylium ion.
Resumo:
The complete structural elucidation of complex lipids, including glycerophospholipids, using only mass spectrometry represents a major challenge to contemporary analytical technologies. Here, we demonstrate that product ions arising from the collision-induced dissociation (CID) of the [M + Na] + adduct ions of phospholipids can be isolated and subjected to subsequent gas-phase ozonolysis-known as ozone-induced dissociation (OzID)-in a linear ion-trap mass spectrometer. The resulting CID/OzID experiment yields abundant product ions that are characteristic of the acyl substitution on the glycerol backbone (i.e., sn-position). This approach is shown to differentiate sn-positional isomers, such as the regioisomeric phosphatidylcholine pair of PC 16:0/18:1 and PC 18:1/16:0. Importantly, CID/OzID provides a sensitive diagnostic for the existence of an isomeric mixture in a given sample. This is of very high value for the analysis of tissue extracts since CID/OzID analyses can reveal changes in the relative abundance of isomeric constituents even within different tissues from the same animal. Finally, we demonstrate the ability to assign carbon-carbon double bond positions to individual acyl chains at specific backbone positions by adding subsequent CID and/or OzID steps to the workflow and that this can be achieved in a single step using a hybrid triple quadrupole-linear ion trap mass spectrometer. This unique approach represents the most complete and specific structural analysis of lipids by mass spectrometry demonstrated to date and is a significant step towards comprehensive top-down lipidomics. This journal is © The Royal Society of Chemistry 2014. Grant Number ARC/DP0986628, ARC/FT110100249, ARC/LP110200648