908 resultados para average complexity
Resumo:
The concept of focus on opportunities describes how many new goals, options, and possibilities employees believe to have in their personal future at work. This study investigated the specific and shared effects of age, job complexity, and the use of successful aging strategies called selection, optimization, and compensation (SOC) in predicting focus on opportunities. Results of data collected from 133 employees of one company (mean age = 38 years, SD = 13, range 16–65 years) showed that age was negatively, and job complexity and use of SOC strategies were positively related to focus on opportunities. In addition, older employees in high-complexity jobs and older employees in low-complexity jobs with high use of SOC strategies were better able to maintain a focus on opportunities than older employees in low-complexity jobs with low use of SOC strategies.
Resumo:
Focus on opportunities is a cognitive-motivational facet of occupational future time perspective that describes how many new goals, options, and possibilities individuals expect to have in their personal work-related futures. This study examined focus on opportunities as a mediator of the relationships between age and work performance and between job complexity and work performance. In addition, it was expected that job complexity buffers the negative relationship between age and focus on opportunities and weakens the negative indirect effect of age on work performance. Results of mediation, moderation, and moderated mediation analyses with data collected from 168 employees in 41 organizations (mean age = 40.22 years, SD = 10.43, range = 19-64 years) as well as 168 peers providing work performance ratings supported the assumptions. The findings suggest that future studies on the role of age for work design and performance should take employees' focus on opportunities into account.
Resumo:
Mango is an important horticultural fruit crop and breeding is a key strategy to improve ongoing sustainability. Knowledge of breeding values of potential parents is important for maximising progress from breeding. This study successfully employed a mixed linear model methods incorporating a pedigree to predict breeding values for average fruit weight from highly unbalanced data for genotypes planted over three field trials and assessed over several harvest seasons. Average fruit weight was found to be under strong additive genetic control. There was high correlation between hybrids propagated as seedlings and hybrids propagated as scions grafted onto rootstocks. Estimates of additive genetic correlation among trials ranged from 0.69 to 0.88 with correlations among harvest seasons within trials greater than 0.96. These results suggest that progress from selection for broad adaptation can be achieved, particularly as no repeatable environmental factor that could be used to predict G x E could be identified. Predicted breeding values for 35 known cultivars are presented for use in ongoing breeding programs.
Resumo:
For the consumer, flavor is arguably the most important aspect of a good coffee. Coffee flavor is extremely complex and arises from numerous chemical, biological and physical influences of cultivar, coffee cherry maturity, geographical growing location, production, processing, roasting and cup preparation. Not surprisingly there is a large volume of research published detailing the volatile and non-volatile compounds in coffee and that are likely to be playing a role in coffee flavor. Further, there is much published on the sensory properties of coffee. Nevertheless, the link between flavor components and the sensory properties expressed in the complex matrix of coffee is yet to be fully understood. This paper provides an overview of the chemical components that are thought to be involved in the flavor and sensory quality of Arabica coffee.
Resumo:
Minimum Description Length (MDL) is an information-theoretic principle that can be used for model selection and other statistical inference tasks. There are various ways to use the principle in practice. One theoretically valid way is to use the normalized maximum likelihood (NML) criterion. Due to computational difficulties, this approach has not been used very often. This thesis presents efficient floating-point algorithms that make it possible to compute the NML for multinomial, Naive Bayes and Bayesian forest models. None of the presented algorithms rely on asymptotic analysis and with the first two model classes we also discuss how to compute exact rational number solutions.
Resumo:
Matrix decompositions, where a given matrix is represented as a product of two other matrices, are regularly used in data mining. Most matrix decompositions have their roots in linear algebra, but the needs of data mining are not always those of linear algebra. In data mining one needs to have results that are interpretable -- and what is considered interpretable in data mining can be very different to what is considered interpretable in linear algebra. --- The purpose of this thesis is to study matrix decompositions that directly address the issue of interpretability. An example is a decomposition of binary matrices where the factor matrices are assumed to be binary and the matrix multiplication is Boolean. The restriction to binary factor matrices increases interpretability -- factor matrices are of the same type as the original matrix -- and allows the use of Boolean matrix multiplication, which is often more intuitive than normal matrix multiplication with binary matrices. Also several other decomposition methods are described, and the computational complexity of computing them is studied together with the hardness of approximating the related optimization problems. Based on these studies, algorithms for constructing the decompositions are proposed. Constructing the decompositions turns out to be computationally hard, and the proposed algorithms are mostly based on various heuristics. Nevertheless, the algorithms are shown to be capable of finding good results in empirical experiments conducted with both synthetic and real-world data.
Resumo:
ZLI-1167 is a ternary mixture of nematic liquid crystals with negative diamagnetic anisotropy. It has, therefore, been used as a solvent where the spinning of the samples around the vertical axis in the conventional electromagnets without destroying the orientation of the dissolved molecules is possible in NMR experiments. This results in sharp lines with widths up to 1 Hz in the spectra.1,2 In an NMR system using a superconducting magnet (where the magnetic field direction is along the axis of spinning of the sample), it is possible to use even the nematic liquid crystals with positive diamagnetic anisotropy such as N-(p'-methoxybenzylidene)-p-n-butylaniline (MBBA) or N-(p'-ethoxybenzylidene)-p-n-butylaniline (EBBA) to obtain the spectra with sample spinning with equally sharp lines.3 The orientational behaviour of the dissolved molecules as a function of relative concentrations of the two solvents is investigated and the results are reported in the present communication.
Resumo:
We develop a two stage split vector quantization method with optimum bit allocation, for achieving minimum computational complexity. This also results in much lower memory requirement than the recently proposed switched split vector quantization method. To improve the rate-distortion performance further, a region specific normalization is introduced, which results in 1 bit/vector improvement over the typical two stage split vector quantizer, for wide-band LSF quantization.
Resumo:
We present two discriminative language modelling techniques for Lempel-Ziv-Welch (LZW) based LID system. The previous approach to LID using LZW algorithm was to directly use the LZW pattern tables forlanguage modelling. But, since the patterns in a language pattern table are shared by other language pattern tables, confusability prevailed in the LID task. For overcoming this, we present two pruning techniques (i) Language Specific (LS-LZW)-in which patterns common to more than one pattern table are removed. (ii) Length-Frequency product based (LF-LZW)-in which patterns having their length-frequency product below a threshold are removed. These approaches reduce the classification score (Compression Ratio [LZW-CR] or the weighted discriminant score [LZW-WDS]) for non native languages and increases the LID performance considerably. Also the memory and computational requirements of these techniques are much less compared to basic LZW techniques.
Resumo:
Information exchange (IE) is a critical component of the complex collaborative medication process in residential aged care facilities (RACFs). Designing information and communication technology (ICT) to support complex processes requires a profound understanding of the IE that underpins their execution. There is little existing research that investigates the complexity of IE in RACFs and its impact on ICT design. The aim of this study was thus to undertake an in-depth exploration of the IE process involved in medication management to identify its implications for the design of ICT. The study was undertaken at a large metropolitan facility in NSW, Australia. A total of three focus groups, eleven interviews and two observation sessions were conducted between July to August 2010. Process modelling was undertaken by translating the qualitative data via in-depth iterative inductive analysis. The findings highlight the complexity and collaborative nature of IE in RACF medication management. These models emphasize the need to: a) deal with temporal complexity; b) rely on an interdependent set of coordinative artefacts; and c) use synchronous communication channels for coordination. Taken together these are crucial aspects of the IE process in RACF medication management that need to be catered for when designing ICT in this critical area. This study provides important new evidence of the advantages of viewing process as a part of a system rather than as segregated tasks as a means of identifying the latent requirements for ICT design and that is able to support complex collaborative processes like medication management in RACFs. © 2012 IEEE.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.
Resumo:
In this paper, we present a low-complexity, near maximum-likelihood (ML) performance achieving detector for large MIMO systems having tens of transmit and receive antennas. Such large MIMO systems are of interest because of the high spectral efficiencies possible in such systems. The proposed detection algorithm, termed as multistage likelihood-ascent search (M-LAS) algorithm, is rooted in Hopfield neural networks, and is shown to possess excellent performance as well as complexity attributes. In terms of performance, in a 64 x 64 V-BLAST system with 4-QAM, the proposed algorithm achieves an uncoded BER of 10(-3) at an SNR of just about 1 dB away from AWGN-only SISO performance given by Q(root SNR). In terms of coded BER, with a rate-3/4 turbo code at a spectral efficiency of 96 bps/Hz the algorithm performs close to within about 4.5 dB from theoretical capacity, which is remarkable in terms of both high spectral efficiency as well as nearness to theoretical capacity. Our simulation results show that the above performance is achieved with a complexity of just O(NtNt) per symbol, where N-t and N-tau denote the number of transmit and receive antennas.