689 resultados para authigenic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

TEM (transmission electron microscopy) observations and microanalyses on smectite microparticles in the sediments of the CRP-2A core were carried out to determine their origin (authigenic or detrital) and the source rocks. Smectites are dioctahedral and are Fe-rich members of the nontronite-beidellite series. They generally display both flaky and hairy shapes, but no large compositional difference between the two forms was observed. Flaky smectites are detrital while hairy smectites probably formed in situ through the reorganisation of previous flaky particles. The source rocks for smectites are probably represented by the McMurdo Volcanic Group to the south, but also by the Ferrar Dolerites and Kirkpatrick Basalts in the Transantarctic Mountains. CRP-2A smectites are Fe and Mg richer than those of the coeval or not coeval levels of the CIROS-I, DSDP 270 and 274 cores. The average compositions of smectite in CRP-1 and CRP-2A cores show a downcore trend toward more alluminiferous terms, which might reflect the increase of the chemical weathering processes on the continent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two box cores taken off Cape Barbas (North-West Africa) have been studied using three methods. The analyses of the coarse fraction, of biogenic opal and of planktonic foraminifera revealed : 1. Core GIK12310-4 penetrates Z, Y, X and upper part of W zone, whereas core GIK12379-1 penetrates Z and upper part of Y zone. 2. Holocene sedimentation rates are 2.5 cm/1000 y for core GIK12310-4 and 6.0 cm/1000 y for core GIK12379-1. During the Y zone 5 cm/l000 y were sedimented incore GIK12310-4 and > 10-20 cm/1000 y in core GIK12379-1. 3. Paleoclimatohgical results are: arid climate and relatively warm water temperatures during the Holocene (Z zone) and during X zone; humid climate and relatively cool water temperatures within the Wuerm (Y zone) (with a non-dated more arid interval found in the middle part of the Y zone) and in the upper part of the W zone. 4. Increased contents of benthos and radiolaria in the Y zone indicate upwelling. Upwelling, characterized by high content of biogenic opal and low water temperatures, was found in core GIK12310-4 at 250 to 350 cm in the lower part of the Y zone. The plankton/benthos ratio of foraminifera, the benthos/radiolaria ratio and water temperatures derived from planktonic foraminifera, differ in both cores in the Holocene, and are nearly identical during the Wuerm.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two deep-sea sediment cores from the northeastern and the southeastern Arabian Sea were studied in order to reconstruct the palaeoenvironments of the past glacial cycles. Core 136KL was recovered from the high-productivity area off Pakistan within the modern oxygen-minimum zone (OMZ). By contrast, modern primary productivity at the site of MD900963 close to Maldives is moderate and bottom waters are today well oxygenated. For both cores, we reconstructed the changes in palaeoproductivity using a set of biomarkers (alkenones, dinosterol and brassicasterol); the main result is that primary productivity is enhanced during glacial stages and lowered during interstadials. The proxies associated with productivity show a 23 kyr cyclicity corresponding to the precession-related insolation cycle. Palaeoredox conditions were studied in both cores using a new organic geochemical parameter (C35/C31-n-alkane ratio) developed by analysing surface sediments from a transect across the OMZ off Pakistan. The value of this ratio in core 136KL shows many variations during the last 65 kyr, indicating that the OMZ was not stable during this time: it disappeared completely during Heinrich- and the Younger Dryas events, pointing to a connection between global oceanic circulation and the stability of the OMZ. The C35/C31 ratio determined in sediments of core MD900963 shows that bottom waters remained rather well oxygenated over the last 330 kyr, which is confirmed by comparison with authigenic metal concentrations in the same sediments. A zonally averaged, circulation-biogeochemical ocean model was used to explore how the intermediate Indian Ocean responds to a freshwater flux anomaly at the surface of the North Atlantic. As suggested by the geochemical time series, both the abundance of Southern Ocean Water and the oxygen concentration are significantly increased in response to this freshwater perturbation.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methane seepage leads to Mg-calcite and aragonite precipitation at a depth of 4,850 m on the Aleutian accretionary margin. Stromatolitic and oncoid growth structures imply encrustation of microorganisms (microbial mats) in the host sediment with a unique growth direction downward into the sediment, forming crust-shaped lithologies. Biomarker investigations of the residue after carbonate dissolution show strong enrichments in crocetane and archaeol, which contain extremely low d13C values. This indicates the presence of methane-consuming archaea, and d13C values of -42 to -51 per mill PDB indicate that methane is the carbon source for the carbonate crusts. Thus, it appears that stromatolitic encrustations of methanotrophic anaerobic archaea probably occurs in a consortium with sulphate-reducing bacteria and that carbonate precipitation proceeds downward into the sediment, where ascending cold fluids provide a methane source. Strontium and oxygen isotope analyses as well as 14C ages of the carbonates suggest that the fluids come from deep within the sediment and that carbonate precipitation began about 3,000 years ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al, K, Sc and Ti concentrations of the terrestrial material-dominant sediments from ODP site 1144 were reported. Comparison between the bulk and the acid-leached sediments indicates that about 20~30% of the Al, K and Sc in the bulk sediments are not hosted in terrestrial detritus, rather they are of authigenic origin. However, authigenic Ti is negligible. The results indicate that Ti rather than Al is the best proxy for terrestrial materials. Significant climate controls are displayed in the Al/Ti, K/Ti and Sc/Ti variation patterns both for the bulk and the acid leached sediments. Such variation patterns can be mainly accounted for in terms of climate change in their provenance areas in South China. Elevated Al/Ti, K/Ti and Sc/Ti ratios during interglacial periods indicate that chemical weathering then was stronger than during glacial periods, which might be related to a more humid climate in interglacial periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Authigenic carbonates were recovered from several horizons between 0 and 52 mbsf in sediments that overlay the Blake Ridge Diapir on the Carolina Rise (Ocean Drilling Program [ODP] Site 996). Active chemosynthetic communities at this site are apparently fed by fluid conduits extending beneath a bottom-simulating reflector (BSR). Gas hydrates occur at several depth intervals in these near-surface sediments. The carbonate nodules are composed of rounded to subangular intraclasts and carbonate cemented mussel shell fragments. Electron microprobe and X-ray diffraction (XRD) investigations show that aragonite is the dominant authigenic carbonate. Authigenic aragonite occurs both as microcrystalline, interstitial cement, and as cavity-filling radial fibrous crystals. The d13C values of the authigenic aragonite vary between -48.4 per mil and -30.5 per mil (Peedee belemnite [PDB]), indicating that carbon derived from 13C-depleted methane is incorporated into these carbonates. The d13C of pore water sum CO2 values are most negative in the upper 10 mbsf, near the sediment/water interface (-38 per mil ± 5 per mil), but noticeably more positive below 25 mbsf (+5 per mil ± 6 per mil). Because carbonates derive their carbon from HCO3-, dissimilarities between the d13C values of carbonate precipitates recovered from greater than 10 mbsf and d13C values of the associated pore fluids suggests that these carbonates formed near the seafloor. Differences of about 1 per mil in the oxygen isotopic composition of carbonate precipitates from different depths are possibly related to changes in bottom-water conditions during glacial and interglacial time periods. Measurements of the strontium isotopic composition on 13 carbonate samples show 87Sr/86Sr values between 0.709125 and 0.709206 with a mean of 0.709165, consistent with the approximate age of their host sediment. Furthermore, the 87Sr/86Sr values of six pore-water samples from Site 996 vary between 0.709130 and 0.709204. The similarity of these values to seawater (87Sr/86Sr = 0.709175), and to 87Sr/86Sr values of pore water from similar sample depths elsewhere on the Blake Ridge (Sites 994, 995, and 997), indicates a shallow Sr source. The 87Sr/86Sr values of the authigenic carbonates at Site 996 are not consistent with the Sr isotopic values predicted for carbonates precipitated from fluids transported upward along fault conduits extending through the base of the gas hydrate-stability zone. Based on our data, we see no evidence of continuing carbonate diagenesis with depth. Therefore, with the exception of their seafloor expression as carbonate crusts, fossil vent sites will not be preserved. Because these authigenic features apparently form only at the seafloor, their vertical distribution and sediment age imply that seepage has been going on in this area for at least 600,000 yr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neodymium isotopes are becoming widely used as a palaeoceanographic tool for reconstructing the source and flow direction of water masses. A new method using planktonic foraminifera which have not been chemically cleaned has proven to be a promising means of avoiding contamination of the deep ocean palaeoceanographic signal by detrital material. However, the exact mechanism by which the Nd isotope signal from bottom waters becomes associated with planktonic foraminifera, the spatial distribution of rare earth element (REE) concentrations within the shell, and the possible mobility of REE ions during changing redox conditions, have not been fully investigated. Here we present REE concentration and Nd isotope data from mixed species of planktonic foraminifera taken from plankton tows, sediment traps and a sediment core from the NW Atlantic. We used multiple geochemical techniques to evaluate how, where and when REEs become associated with planktonic foraminifera as they settle through the water column, reside at the surface and are buried in the sediment. Analyses of foraminifera shells from plankton tows and sediment traps between 200 and 2938 m water depth indicate that only ~20% of their associated Nd is biogenically incorporated into the calcite structure. The remaining 80% is associated with authigenic metal oxides and organic matter, which form in the water column, and remain extraneous to the carbonate structure. Remineralisation of these organic and authigenic phases releases ions back into solution and creates new binding sites, allowing the Nd isotope ratio to undergo partial equilibration with the ambient seawater, as the foraminifera fall through the water column. Analyses of fossil foraminifera shells from sediment cores show that their REE concentrations increase by up to 10-fold at the sediment-water interface, and acquire an isotopic signature of bottom water. Adsorption and complexation of REE3+ ions between the inner layers of calcite contributes significantly to elevated REE concentrations in foraminifera. The most likely source of REE ions at this stage of enrichment is from bottom waters and from the remineralisation of oxide phases which are in chemical equilibrium with the bottom waters. As planktonic foraminifera are buried below the sediment-water interface redox-sensitive ion concentrations are adjusted within the shells depending on the pore-water oxygen concentration. The concentration of ions which are passively redox sensitive, such as REE3+ ions, is also controlled to some extent by this process. We infer that (a) the Nd isotope signature of bottom water is preserved in planktonic foraminifera and (b) that it relies on the limited mobility of particle reactive REE3+ ions, aided in some environments by micron-scale precipitation of MnCO3. This study indicates that there may be sedimentary environments under which the bottom water Nd isotope signature is not preserved by planktonic foraminifera. Tests to validate other core sites must be carried out before downcore records can be used to interpret palaeoceanographic changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exchangeable cation compositions of organic-poor terrigenous sediments containing smectite as primary ion exchanger from a series of holes along ODP Leg 168 transect on the eastern flank of the Juan de Fuca Ridge have been examined as a function of distance from the ridge axis and burial depth. The total cation exchange capacity (CEC) values of the sediments ranged from 2 to 59 meq/100 g, increasing with increases in the wt.% smectite. At the seafloor, the exchangeable cation compositions involving Na, K, Mg, and Ca, expressed in terms of equivalent fraction, are nearly constant regardless of the different transect sites: XNa = 0.21 ± 0.04, XK = 0.08 ± 0.01, XMg = 0.33 ± 0.09, and XCa = 0.38 ± 0.09. The calculated selectivity coefficients of the corresponding quaternary exchange reactions, calculated using porewater data, are in log units -5.45 ± 0.39 for Na, 1.97 ± 0.49 for K, 0.42 ± 0.41 for Mg, and 3.06 ± 0.69 for Ca. The exchangeable cation compositions below the seafloor change systematically with distance from the ridge crest and burial depth, conforming to the trends of the same cations in the porewaters. The selectivities for Na and Mg are roughly constant at temperatures from 2 to 66°C, indicating that the equivalent fractions of these two cations are independent of sediment alteration taking place on the ridge flank. Unlike Na and Mg, the temperature influence is significant for K and Ca, with Ca-selectivity decreases being coupled with increases in K-selectivity. Although potentially related to diagenetic and/or hydrothermal mineral precipitation or recrystallization, no evidence of such alteration was detected by XRD and TEM. In sites where upwelling of hydrothermal fluids from basement is occurring, the K-selectivity of the sediment is appreciably higher than at the other sites and corresponds to the formation of (Fe, Mg) rich smectite and zeolites. Our study indicates that local increases in K-selectivity at hydrothermal sites are caused by the formation of these authigenic minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A geochemical investigation has been conducted of a suite of four sediment cores collected from directly beneath the hydrothermal plume at distances of 2 to 25 km from the Rainbow hydrothermal field. As well as a large biogenic component (>80% CaCO3) these sediments record clear enrichments of the elements Fe, Cu, Mn, V, P, and As from hydrothermal plume fallout but only minor detrital background material. Systematic variations in the abundances of "hydrothermal" elements are observed at increasing distance from the vent site, consistent with chemical evolution of the dispersing plume. Further, pronounced Ni and Cr enrichments at specific levels within each of the two cores collected from closest to the vent site are indicative of discrete episodes of additional input of ultrabasic material at these two near-field locations. Radiocarbon dating reveals mean Holocene accumulation rates for all four cores of 2.7 to 3.7 cm.kyr?1, with surface mixed layers 7 to 10+ cm thick, from which a history of deposition from the Rainbow hydrothermal plume can be deduced. Deposition from the plume supplies elements to the underlying sediments that are either directly hydrothermally sourced (e.g., Fe, Mn, Cu) or scavenged from seawater via the hydrothermal plume (e.g., V, P, As). Holocene fluxes into to the cores' surface mixed layers are presented which, typically, are an order of magnitude greater than "background" authigenic fluxes from the open North Atlantic. One core, collected closest to the vent site, indicates that both the concentration and flux of hydrothermally derived material increased significantly at some point between 8 and 12 14C kyr ago; the preferred explanation is that this variation reflects the initiation/intensification of hydrothermal venting at the Rainbow hydrothermal field at this time - perhaps linked to some specific tectonic event in this fault-controlled hydrothermal setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ag and Au are typically concentrated in phosphorites; they genetically related to organic matter of bottom sediments that extract these elements from seawater or interstitial water. Consequently, the phosphorites inherit Ag and Au from host sediments that are not always enriched in them. In contrast to other organic-rich sediments, analyzed sample of recent diatom ooze from the Namibian shelf is not enriched in Ag and Au, although some sediments from this region are enriched in Au. In addition to authigenic Au, allochthonous Au associated with quartz grains and micrograins can also be present in shelf phosphorites. This was observed in oceanic phosphorites of various types. Anomalous Au and Fe contents recorded in one seamount phosphorite sample can be related to extraction of Au and nonferrous metals by ferromanganese hydroxides from seawater. This process can serve as one of major mechanisms of Au supply to ferromanganese crusts on seamounts. Phosphorites and sediments are enriched in Ru simultaneously with U. Author's data show that U content varies from 17 (seamount phosphorite) to 887 ppm (Pleistocene phosphorite nodule from the Namibian shelf). This is probably caused by different types of behavior of light and heavy PGEs in the marine environment.