980 resultados para ash deposit
Resumo:
We make a qualitative and quantitative comparison of numericalsimulations of the ashcloud generated by the eruption of Eyjafjallajökull in April2010 with ground-basedlidar measurements at Exeter and Cardington in southern England. The numericalsimulations are performed using the Met Office’s dispersion model, NAME (Numerical Atmospheric-dispersion Modelling Environment). The results show that NAME captures many of the features of the observed ashcloud. The comparison enables us to estimate the fraction of material which survives the near-source fallout processes and enters into the distal plume. A number of simulations are performed which show that both the structure of the ashcloudover southern England and the concentration of ash within it are particularly sensitive to the height of the eruption column (and the consequent estimated mass emission rate), to the shape of the vertical source profile and the level of prescribed ‘turbulent diffusion’ (representing the mixing by the unresolved eddies) in the free troposphere with less sensitivity to the timing of the start of the eruption and the sedimentation of particulates in the distal plume.
Resumo:
The plume from the 2011 eruption of Grímsvötn was highly electrically charged, as shown by the considerable lightning activity measured by the United Kingdom Met Office’s low-frequency lightning detection network. Previous measurements of volcanic plumes have shown that ash particles are electrically charged up to hundreds of kilometers away from the vent, which indicates that the ash continues to charge in the plume [R. G. Harrison, K. A. Nicoll, Z. Ulanowski, and T. A. Mather, Environ. Res. Lett. 5 024004 (2010); H. Hatakeyama J. Meteorol. Soc. Jpn. 27 372 (1949)]. In this Letter, we study triboelectric charging of different size fractions of a sample of volcanic ash experimentally. Consistently with previous work, we find that the particle size distribution is a determining factor in the charging. Specifically, our laboratory experiments demonstrate that the normalized span of the particle size distribution plays an important role in the magnitude of charging generated. The influence of the normalized span on plume charging suggests that all ash plumes are likely to be charged, with implications for remote sensing and plume lifetime through scavenging effects.
Resumo:
During April and May 2010 the ash cloud from the eruption of the Icelandic volcano Eyjafjallajökull caused widespread disruption to aviation over northern Europe. The location and impact of the eruption led to a wealth of observations of the ash cloud were being obtained which can be used to assess modelling of the long range transport of ash in the troposphere. The UK FAAM (Facility for Airborne Atmospheric Measurements) BAe-146-301 research aircraft overflew the ash cloud on a number of days during May. The aircraft carries a downward looking lidar which detected the ash layer through the backscatter of the laser light. In this study ash concentrations derived from the lidar are compared with simulations of the ash cloud made with NAME (Numerical Atmospheric-dispersion Modelling Environment), a general purpose atmospheric transport and dispersion model. The simulated ash clouds are compared to the lidar data to determine how well NAME simulates the horizontal and vertical structure of the ash clouds. Comparison between the ash concentrations derived from the lidar and those from NAME is used to define the fraction of ash emitted in the eruption that is transported over long distances compared to the total emission of tephra. In making these comparisons possible position errors in the simulated ash clouds are identified and accounted for. The ash layers seen by the lidar considered in this study were thin, with typical depths of 550–750 m. The vertical structure of the ash cloud simulated by NAME was generally consistent with the observed ash layers, although the layers in the simulated ash clouds that are identified with observed ash layers are about twice the depth of the observed layers. The structure of the simulated ash clouds were sensitive to the profile of ash emissions that was assumed. In terms of horizontal and vertical structure the best results were obtained by assuming that the emission occurred at the top of the eruption plume, consistent with the observed structure of eruption plumes. However, early in the period when the intensity of the eruption was low, assuming that the emission of ash was uniform with height gives better guidance on the horizontal and vertical structure of the ash cloud. Comparison of the lidar concentrations with those from NAME show that 2–5% of the total mass erupted by the volcano remained in the ash cloud over the United Kingdom.
Resumo:
The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME) has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter). NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.
Resumo:
At various times during the Quaternary, north-eastern England was a zone of confluence between dynamic ice lobes sourced from the Pennines, northern Scotland, the Cheviots, and Scandinavia. The region thus has some of the most complex exposures of Middle to Late Pleistocene sediments in Britain, with both interglacial and glacial sediments deposited in terrestrial and marine settings. We investigated sedimentary sequences exposed on the coastline of County Durham at Warren House Gill, and present a new model of British and Fennoscandian Ice Sheet interaction in the North Sea Basin during the Middle Pleistocene. The stratigraphy at Warren House Gill consists of a lower diamicton and upper estuarine sediments, both part of the Warren House Formation. They are separated from the overlying Weichselian Blackhall and Horden tills by a substantial unconformity. The lower diamicton of the Warren House Formation is re-interpreted here as an MIS 8 to 12 glaciomarine deposit containing ice-rafted lithics from north-eastern Scotland and the northeast North Sea, and is renamed the ‘Ash Gill Member’. It is dated by lithological comparison to the Easington Raised Beach, Middle Pleistocene Amino Acid Racemisation values, and indirectly by optically stimulated luminescence. The overlying shallow subaqueous sediments were deposited in an estuarine environment by suspension settling and bottom current activity. They are named the ‘Whitesides Member’, and form the uppermost member of the Warren House Formation. During glaciation, ice-rafted material was deposited in a marine embayment. There is no evidence of a grounded, onshore Scandinavian ice sheet in County Durham during MIS 6, which has long been held as the accepted stratigraphy. This has major implications for the currently accepted British Quaternary Stratigraphy. Combined with recent work on the Middle Pleistocene North Sea Drift from Norfolk, which is now suggested to have been deposited by a Scottish ice sheet, the presence of a Scandinavian ice sheet in eastern England at any time during the Quaternary is becoming increasingly doubtful.
Resumo:
The long duration of the 2010 Eyjafjallajökull eruption provided a unique opportunity to measure a widely dispersed volcanic ash cloud. Layers of volcanic ash were observed by the European Aerosol Research Lidar Network with a mean depth of 1.2 km and standard deviation of 0.9 km. In this paper we evaluate the ability of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) to simulate the observed ash layers and examine the processes controlling their depth. NAME simulates distal ash layer depths exceptionally well with a mean depth of 1.2 km and standard deviation of 0.7 km. The dominant process determining the depth of ash layers over Europe is the balance between the vertical wind shear (which acts to reduce the depth of the ash layers) and vertical turbulent mixing (which acts to deepen the layers). Interestingly, differential sedimentation of ash particles and the volcano vertical emission profile play relatively minor roles.
Resumo:
The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD)models. In this paper an objectivemetric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The 5 metric is based on the fractions skill score (FSS). Thismeasure of skill provides more information than traditional point-bypoint metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale overwhich skill is being assessed. The FSS determines the scale overwhich a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The 10 idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200–700km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.
Resumo:
A data insertion method, where a dispersion model is initialized from ash properties derived from a series of satellite observations, is used to model the 8 May 2010 Eyjafjallajökull volcanic ash cloud which extended from Iceland to northern Spain. We also briefly discuss the application of this method to the April 2010 phase of the Eyjafjallajökull eruption and the May 2011 Grímsvötn eruption. An advantage of this method is that very little knowledge about the eruption itself is required because some of the usual eruption source parameters are not used. The method may therefore be useful for remote volcanoes where good satellite observations of the erupted material are available, but little is known about the properties of the actual eruption. It does, however, have a number of limitations related to the quality and availability of the observations. We demonstrate that, using certain configurations, the data insertion method is able to capture the structure of a thin filament of ash extending over northern Spain that is not fully captured by other modeling methods. It also verifies well against the satellite observations according to the quantitative object-based quality metric, SAL—structure, amplitude, location, and the spatial coverage metric, Figure of Merit in Space.
Resumo:
In the event of a volcanic eruption the decision to close airspace is based on forecast ash maps, produced using volcanic ash transport and dispersion models. In this paper we quantitatively evaluate the spatial skill of volcanic ash simulations using satellite retrievals of ash from the Eyja allajökull eruption during the period from 7 to 16 May 2010. We find that at the start of this period, 7–10 May, the model (FLEXible PARTicle) has excellent skill and can predict the spatial distribution of the satellite-retrieved ash to within 0.5∘ × 0.5∘ latitude/longitude. However, on 10 May there is a decrease in the spatial accuracy of the model to 2.5∘× 2.5∘ latitude/longitude, and between 11 and 12 May the simulated ash location errors grow rapidly. On 11 May ash is located close to a bifurcation point in the atmosphere, resulting in a rapid divergence in the modeled and satellite ash locations. In general, the model skill reduces as the residence time of ash increases. However, the error growth is not always steady. Rapid increases in error growth are linked to key points in the ash trajectories. Ensemble modeling using perturbed meteorological data would help to represent this uncertainty, and assimilation of satellite ash data would help to reduce uncertainty in volcanic ash forecasts.
Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters
Resumo:
The paper presents a characterization and study of the pozzolanic behavior between calcium hydroxide (CH) and bamboo leaf ash (BLAsh), which was obtained by calcining bamboo leaves at 600 degrees C for 2 h in a laboratory electric furnace. To evaluate the pozzolanic behavior the conductometric method was used, which is based on the measurement of the electrical conductivity in a BLAsh/CH solution with the reaction time. Later, the kinetic parameters are quantified by applying a kinetic-diffusive model. The kinetic parameters that characterize the process (in particular, the reaction rate constant and free energy of activation) were determined with relative accuracy in the fitting process of the model. The pozzolanic activity is quantitatively evaluated according to the values obtained of the kinetic parameters. Other experimental techniques, such as X-ray diffraction (XRD) and scanning electron microscopy (SEM), were also employed. The results show that this kind of ash is formed by silica with a completely amorphous nature and a high pozzolanic activity. The correlation between the values of free energy of activation (Delta G(#)) and the reaction rate constants (K) are in correspondence with the theoretical studies about the rate processes reported in the literature. (C) 2010 Elsevier Ltd. All rights reserved.
A study of the chemical and physical properties of cashew nut shell ash for use in cement materials.
Resumo:
A study of the chemical and physical properties of cashew nut shell ash for use in cement materials. Ash occupies a prominent place among agro-industrial wastes, as it is derived from energy generation processes. Several types of ash have pozzolanic reactivity, and might be used as replacement material for cement, resulting in less energy waste and lower cost. This work aimed to investigate the physical and chemical properties of the cashew nut shell ash (CNSA), by performing the following measurement tests: chemical analysis, bulk density, specific mass, leaching and solubilization process, X-ray diffraction (XrD), specific surface area (BET) and pozzolanicity analysis with cement and lime. The results indicate a low reactivity of CNSA and the presence of heavy metals, alkalis and phenol.
Resumo:
This paper presents a study of the pozzolanic reaction kinetics between calcium hydroxide and a mixture of sugar cane bagasse with 20 and 30% of clay, burned at 800 and 1000 degrees C (SCBCA) by electrical conductivity measurements. A kinetic-diffusive model produced in previous studies by some of the authors was used. The model was fitted to the experimental data, which allowed the computation of the kinetic parameters of the pozzolanic reaction (reaction rate constant and free energy of activation) that rigorously characterised the pozzolanic activity of the materials. The results show that SCBCA demonstrated reactivity and good pozzolanic qualities in the range 800-1000 degrees C.
Resumo:
A semi-detailed gravity survey was carried out over an area of 650 km(2) localized in the Eo-Neoproterozoic coastal zone of Paraiba State where 548 new gravity stations were added to the existing database. Gravity measurements were made with a LaCoste and Romberg model G meter with a precision of 0.04 mGal. The altitude was determined by barometric levelling with a fixed base achieving a 1.2 m measure of uncertainty, corresponding to an overall accuracy of 0.24 mGal for the Bouguer anomaly. The residual Bouguer map for a 7th degree regional polynomial showed a circumscribed negative anomaly coincident with a localized aero-magnetic anomaly and with hydro-thermally altered outcrops, near the city of Itapororoca. The 3D gravity modelling, constrained by geologic mapping was interpreted as a low density, fractured and/or altered material with a most probable volume of approximately 23 km(3), extending to about 8,500 m depth. This result is in accordance with a volcanic body associated with hydrothermal processes accompanied by surface mineralization evidence, which may be of interest to the mining industry.
Resumo:
We present four SHRIMP U-Pb zircon ages for the Choiyoi igneous province from the San Rafael Block, central-western Argentina. Dated samples come from the Yacimiento Los Reyunos Formation (281.4 +/- 2.5 Ma) of the Cochico Group (Lower Choiyoi section: andesitic breccias, dacitic to rhyolitic ignimbrites and continental conglomerates). Agua de los Burros Formation (264.8 +/- 2.3 Ma and 264.5 +/- 3.0 Ma) and Cerro Carrizalito Formation (251.9 +/- 2.7 Ma Upper Choiyoi section: rhyolitic ignimbrites and pyroclastic flows) spanning the entire Permian succession of the Choiyoi igneous province. A single ziron from the El Imperial Formation, that is overlain unconformably by the Choiyoi succession, yielded an early Permian age (297.2 +/- 5.3 Ma). while the main detrital zircon population indicated an Ordovician age (453.7 +/- 8.1 Ma). The new data establishes a more precise Permian age (Artinskian-Lopingian) for the section studied spanning 30 Ma of volcanic activity. Volcanological observations for the Choiyoi succession support the occurrence of explosive eruptions of plinian to ultraplinian magnitudes, capable of injecting enormous volumes of tephra in the troposphere-stratosphere. The new SHRIMP ages indicate contemporaneity between the Choyoi succession and the upper part of the Parana Basin late Paleozoic section, from the Irad up to the Rio do Rasto formations, encompassing about 24 Ma. Geochemical data show a general congruence in compositional and tectonic settings between the volcanics and Parana Basin Permian ash fall derived layers of bentonites. Thickness and granulometry of ash fall layers broadly fit into the depletion curve versus distance from the remote source vent of ultraplinian eruptions. Thus, we consider that the Choiyoi igneous province was the source of ash fall deposits in the upper Permian section of the Parana Basin. Data presented here allow a more consistent correlation between tectono-volcanic Permian events along the paleo-Pacific margin of southwestern Gondwana and the geological evolution of neighboring Paleozoic foreland basins in South America and Africa. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The Pinguino deposit, located in the low sulfidation epithermal metallogenetical province of the Deseado Massif, Patagonia, Argentina, represents a distinct deposit type in the region. It evolved through two different mineralization events: an early In-bearing polymetallic event that introduced In, Zn, Pb, Ag, Cd, Au, As, Cu, Sn, W and Bi represented by complex sulfide mineralogy, and a late Ag-Au quartz-rich vein type that crosscut and overprints the early polymetallic mineralization. The indium-bearing polymetallic mineralization developed in three stages: an early Cu-Au-In-As-Sn-W-Bi stage (Ps(1)), a Zn-Pb-Ag-In-Cd-Sb stage (Ps(2)) and a late Zn-In-Cd (Ps(3)). Indium concentrations in the polymetallic veins show a wide range (3.4 to 1,184 ppm In). The highest indium values (up to 1,184 ppm) relate to the Ps(2) mineralization stage, and are associated with Fe-rich sphalerites, although significant In enrichment (up to 159 ppm) is also present in the Ps(1) paragenesis associated with Sn-minerals (ferrokesterite and cassiterite). The hydrothermal alteration associated with the polymetallic mineralization is characterized by advanced argillic alteration within the immediate vein zone, and sericitic alteration enveloping the vein zone. Fluid inclusion studies indicate homogenisation temperatures of 308.2-327A degrees C for Ps(1) and 255-312.4A degrees C for Ps(2), and low to moderate salinities (2 to 5 eq.wt.% NaCl and 4 to 9 eq.wt.% NaCl, respectively). delta(34)S values of sulfide minerals (+0.76aEuro degrees to +3.61aEuro degrees) indicate a possible magmatic source for the sulfur in the polymetallic mineralization while Pb isotope ratios for the sulfides and magmatic rocks ((206)Pb/(204)Pb, (207)Pb/(204)Pb and (208)Pb/(204)Pb ratios of 17.379 to 18.502; 15.588 to 15.730 and 38.234 to 38.756, respectively) are consistent with the possibility that the Pb reservoirs for both had the same crustal source. Spatial relationships, hydrothermal alteration styles, S and Pb isotopic data suggest a probable genetic relation between the polymetallic mineralization and dioritic intrusions that could have been the source of metals and hydrothermal fluids. Mineralization paragenesis, alteration mineralogy, geochemical signatures, fluid inclusion data and isotopic data, confirm that the In-bearing polymetallic mineralization from Pinguino deposit is a distinct type, in comparison with the well-known epithermal low sulfidation mineralization from the Deseado Massif.