820 resultados para approach to information systems
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The ability to utilize information systems (IS) effectively is becoming a necessity for business professionals. However, individuals differ in their abilities to use IS effectively, with some achieving exceptional performance in IS use and others being unable to do so. Therefore, developing a set of skills and attributes to achieve IS user competency, or the ability to realize the fullest potential and the greatest performance from IS use, is important. Various constructs have been identified in the literature to describe IS users with regard to their intentions to use IS and their frequency of IS usage, but studies to describe the relevant characteristics associated with highly competent IS users, or those who have achieved IS user competency, are lacking. This research develops a model of IS user competency by using the Repertory Grid Technique to identify a broad set of characteristics of highly competent IS users. A qualitative analysis was carried out to identify categories and sub-categories of these characteristics. Then, based on the findings, a subset of the model of IS user competency focusing on the IS-specific factors – domain knowledge of and skills in IS, willingness to try and to explore IS, and perception of IS value – was developed and validated using the survey approach. The survey findings suggest that all three factors are relevant and important to IS user competency, with willingness to try and to explore IS being the most significant factor. This research generates a rich set of factors explaining IS user competency, such as perception of IS value. The results not only highlight characteristics that can be fostered in IS users to improve their performance with IS use, but also present research opportunities for IS training and potential hiring criteria for IS users in organizations.
Resumo:
Current scientific applications have been producing large amounts of data. The processing, handling and analysis of such data require large-scale computing infrastructures such as clusters and grids. In this area, studies aim at improving the performance of data-intensive applications by optimizing data accesses. In order to achieve this goal, distributed storage systems have been considering techniques of data replication, migration, distribution, and access parallelism. However, the main drawback of those studies is that they do not take into account application behavior to perform data access optimization. This limitation motivated this paper which applies strategies to support the online prediction of application behavior in order to optimize data access operations on distributed systems, without requiring any information on past executions. In order to accomplish such a goal, this approach organizes application behaviors as time series and, then, analyzes and classifies those series according to their properties. By knowing properties, the approach selects modeling techniques to represent series and perform predictions, which are, later on, used to optimize data access operations. This new approach was implemented and evaluated using the OptorSim simulator, sponsored by the LHC-CERN project and widely employed by the scientific community. Experiments confirm this new approach reduces application execution time in about 50 percent, specially when handling large amounts of data.
Resumo:
Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.
Resumo:
This work aims to evaluate the reliability of these levee systems, calculating the probability of “failure” of determined levee stretches under different loads, using probabilistic methods that take into account the fragility curves obtained through the Monte Carlo Method. For this study overtopping and piping are considered as failure mechanisms (since these are the most frequent) and the major levee system of the Po River with a primary focus on the section between Piacenza and Cremona, in the lower-middle area of the Padana Plain, is analysed. The novelty of this approach is to check the reliability of individual embankment stretches, not just a single section, while taking into account the variability of the levee system geometry from one stretch to another. This work takes also into consideration, for each levee stretch analysed, a probability distribution of the load variables involved in the definition of the fragility curves, where it is influenced by the differences in the topography and morphology of the riverbed along the sectional depth analysed as it pertains to the levee system in its entirety. A type of classification is proposed, for both failure mechanisms, to give an indication of the reliability of the levee system based of the information obtained by the fragility curve analysis. To accomplish this work, an hydraulic model has been developed where a 500-year flood is modelled to determinate the residual hazard value of failure for each stretch of levee near the corresponding water depth, then comparing the results with the obtained classifications. This work has the additional the aim of acting as an interface between the world of Applied Geology and Environmental Hydraulic Engineering where a strong collaboration is needed between the two professions to resolve and improve the estimation of hydraulic risk.
Resumo:
Epileptic seizures are due to the pathological collective activity of large cellular assemblies. A better understanding of this collective activity is integral to the development of novel diagnostic and therapeutic procedures. In contrast to reductionist analyses, which focus solely on small-scale characteristics of ictogenesis, here we follow a systems-level approach, which combines both small-scale and larger-scale analyses. Peri-ictal dynamics of epileptic networks are assessed by studying correlation within and between different spatial scales of intracranial electroencephalographic recordings (iEEG) of a heterogeneous group of patients suffering from pharmaco-resistant epilepsy. Epileptiform activity as recorded by a single iEEG electrode is determined objectively by the signal derivative and then subjected to a multivariate analysis of correlation between all iEEG channels. We find that during seizure, synchrony increases on the smallest and largest spatial scales probed by iEEG. In addition, a dynamic reorganization of spatial correlation is observed on intermediate scales, which persists after seizure termination. It is proposed that this reorganization may indicate a balancing mechanism that decreases high local correlation. Our findings are consistent with the hypothesis that during epileptic seizures hypercorrelated and therefore functionally segregated brain areas are re-integrated into more collective brain dynamics. In addition, except for a special sub-group, a highly significant association is found between the location of ictal iEEG activity and the location of areas of relative decrease of localised EEG correlation. The latter could serve as a clinically important quantitative marker of the seizure onset zone (SOZ).
Resumo:
A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.
Resumo:
In rapidly evolving domains such as Computer Assisted Orthopaedic Surgery (CAOS) emphasis is often put first on innovation and new functionality, rather than in developing the common infrastructure needed to support integration and reuse of these innovations. In fact, developing such an infrastructure is often considered to be a high-risk venture given the volatility of such a domain. We present CompAS, a method that exploits the very evolution of innovations in the domain to carry out the necessary quantitative and qualitative commonality and variability analysis, especially in the case of scarce system documentation. We show how our technique applies to the CAOS domain by using conference proceedings as a key source of information about the evolution of features in CAOS systems over a period of several years. We detect and classify evolution patterns to determine functional commonality and variability. We also identify non-functional requirements to help capture domain variability. We have validated our approach by evaluating the degree to which representative test systems can be covered by the common and variable features produced by our analysis.
Resumo:
A multitude of products, systems, approaches, views and notions characterize the field of e-learning. This article attempts to disentangle the field by using economic and sociological theories, theories of marketing management and strategy as well as practical experience gained by the author while working with leading edge suppliers of e-learning. On this basis, a distinction between knowledge creation e-learning and knowledge transfer e-learning is made. The various views are divided into four different ideal-typical paradigms, each with its own characteristics and limitations. Selecting the right paradigm to use in the development of an e-learning strategy may prove crucial to success. Implications for the development of an e-learning strategy in businesses and educational institutions are outlined.
Resumo:
Purpose: To develop an interdisciplinary course to teach dental students about evidence-based dentistry, development of search strategies, critical appraisal of literature, and dental informatics. [See PDF for complete abstract]
Resumo:
This study investigates the degree to which gender, ethnicity, relationship to perpetrator, and geomapped socio-economic factors significantly predict the incidence of childhood sexual abuse, physical abuse and non- abuse. These variables are then linked to geographic identifiers using geographic information system (GIS) technology to develop a geo-mapping framework for child sexual and physical abuse prevention.
Resumo:
The field of animal syndromic surveillance (SyS) is growing, with many systems being developed worldwide. Now is an appropriate time to share ideas and lessons learned from early SyS design and implementation. Based on our practical experience in animal health SyS, with additions from the public health and animal health SyS literature, we put forward for discussion a 6-step approach to designing SyS systems for livestock and poultry. The first step is to formalise policy and surveillance goals which are considerate of stakeholder expectations and reflect priority issues (1). Next, it is important to find consensus on national priority diseases and identify current surveillance gaps. The geographic, demographic, and temporal coverage of the system must be carefully assessed (2). A minimum dataset for SyS that includes the essential data to achieve all surveillance objectives while minimizing the amount of data collected should be defined. One can then compile an inventory of the data sources available and evaluate each using the criteria developed (3). A list of syndromes should then be produced for all data sources. Cases can be classified into syndrome classes and the data can be converted into time series (4). Based on the characteristics of the syndrome-time series, the length of historic data available and the type of outbreaks the system must detect, different aberration detection algorithms can be tested (5). Finally, it is essential to develop a minimally acceptable response protocol for each statistical signal produced (6). Important outcomes of this pre-operational phase should be building of a national network of experts and collective action and evaluation plans. While some of the more applied steps (4 and 5) are currently receiving consideration, more emphasis should be put on earlier conceptual steps by decision makers and surveillance developers (1-3).