986 resultados para ant pollination
Resumo:
1 Pesticides are considered a threat to pollinators but little is known about the potential impacts of their widespread use on pollinators. Less still is known about the impacts on pollination, comprising the ecosystem service that pollinators provide to wildflowers and crops. 2 The present study measured flower visitation and pollination in an agricultural landscape, by placing potted flowering plants (Petunia sp.) in vine fields sprayed with a highly toxic insecticide (fenitrothion). During two sampling rounds, insect visitors to the petunias were observed and measures of pollination were recorded by counting and weighing seeds. 3 In the earlier sampling round, a lower species richness of insect visitors was observed in fields that had received an early application of insecticide. No negative impacts were found from later applications. The results obtained suggest a greater potential harm to insect pollinators and flower visitation as a result of insecticide application early in the season. 4 No reduction in pollination was found in fields that received an early insecticide application. Pollination was greater with two insecticide applications between sampling rounds rather than one application. 5 In the present study system, insecticide application had a negative effect on pollinators but a possible positive effect on pollination services. In some cases, it may be that actions for conserving biodiversity will not benefit pollination services to all plants.
Resumo:
There is concern that insect pollinators, such as honey bees, are currently declining in abundance, and are under serious threat from environmental changes such as habitat loss and climate change; the use of pesticides in intensive agriculture, and emerging diseases. This paper aims to evaluate how much public support there would be in preventing further decline to maintain the current number of bee colonies in the UK. The contingent valuation method (CVM) was used to obtain the willingness to pay (WTP) for a theoretical pollinator protection policy. Respondents were asked whether they would be WTP to support such a policy and how much would they pay? Results show that the mean WTP to support the bee protection policy was £1.37/week/household. Based on there being 24.9 million households in the UK, this is equivalent to £1.77 billion per year. This total value can show the importance of maintaining the overall pollination service to policy makers. We compare this total with estimates obtained using a simple market valuation of pollination for the UK.
Resumo:
To inspire new ideas in research on pollination ecology, we list the most important unanswered questions in the field. This list was drawn up by contacting 170 scientists from different areas of pollination ecology and asking them to contribute their opinion on the greatest knowledge gaps that need to be addressed. Almost 40% of them took part in our email poll and we received more than 650 questions and comments, which we classified into different categories representing various aspects of pollination research. The original questions were merged and synthesised, and a final vote and ranking led to the resultant list. The categories cover plant sexual reproduction, pollen and stigma biology, abiotic pollination, evolution of animal-mediated pollination, interactions of pollinators and floral antagonists, pollinator behaviour, taxonomy, plant-pollinator assemblages, geographical trends in diversity, drivers of pollinator loss, ecosystem services, management of pollination, and conservation issues such as the implementation of pollinator conservation. We focused on questions that were of a broad scope rather than case-specific; thus, addressing some questions may not be feasible within single research projects but constitute a general guide for future directions. With this compilation we hope to raise awareness of pollination-related topics not only among researchers but also among non-specialists including policy makers, funding agencies and the public at large.
Resumo:
Pollination services are known to provide substantial benefits to human populations and agriculture in particular. Although many species are known to provide pollination services, honeybees (Apis mellifera) are often assumed to provide the majority of these services to agriculture. Using data from a range of secondary sources, this study assesses the importance of insect pollinated crops at regional and national scales and investigates the capacity of honeybees to provide optimal pollination services to UK agriculture. The findings indicate that insect pollinated crops have become increasingly important in UK crop agriculture and, as of 2007, accounted for 20% of UK cropland and 19% of total farmgate crop value. Analysis of honeybee hive numbers indicates that current UK populations are only capable of supplying 34% of pollination service demands even under favourable assumptions, falling from 70% in 1984. In spite of this decline, insect pollinated crop yields have risen by an average of 54% since 1984, casting doubt on long held beliefs that honeybees provide the majority of pollination services. Future land use and crop production patterns may further increase the role of pollination services to UK agriculture, highlighting the importance of measures aimed at maintaining both wild and managed species.
Resumo:
DNA- and RNA-based polymerase chain reaction (PCR) systems were used with Cacao swollen shoot virus (CSSV) primers designed from conserved regions of the six published genomic sequences of CSSV to investigate whether the virus is transmissible from infected trees through cross-pollination to seeds and seedlings. Pollen was harvested from CSSV infected cocoa trees and used to cross-pollinate flowers of healthy cocoa trees (recipient parents) to generate enough cocoa seeds for the PCR screening. Adequate precautions were taken to avoid cross-contamination during duplicated DNA extractions and only PCR results accompanied by effective positive and negative controls were scored. Results from the PCR analyses showed that samples of cocoa pod husk, mesocarp and seed tissues (testa, cotyledon and embryo) from the cross-pollinations were PCR negative for CSSV DNA. Sequential DNA samples from new leaves of seedlings resulting from the cross-pollinated trees were consistently PCR negative for presence of portions of CSSV DNA for over 36 months after germination. A reverse transcription-PCR analysis performed on the seedlings showed negative results, indicating absence of functional CSSV RNA transcripts in the seedlings. None of the seedlings exhibited symptoms characteristic of the CSSV disease, and all infectivity tests on the seedlings were also negative. Following these results, the study concluded that although CSSV DNA was detected in pollen from CSSV infected trees, there was no evidence of pollen transmission of the virus through cross-pollination from infected cocoa parents to healthy cocoa trees. Keywords:badnavirus;CSSV;PCR;pollen;seed transmission;Theobroma cacao
Resumo:
DNA- and RNA-based polymerase chain reaction (PCR) systems were used with Cacao swollen shoot virus (CSSV) primers designed from conserved regions of the six published genomic sequences of CSSV to investigate whether the virus is transmissible from infected trees through cross-pollination to seeds and seedlings. Pollen was harvested from CSSV infected cocoa trees and used to cross-pollinate flowers of healthy cocoa trees (recipient parents) to generate enough cocoa seeds for the PCR screening. Adequate precautions were taken to avoid cross-contamination during duplicated DNA extractions and only PCR results accompanied by effective positive and negative controls were scored. Results from the PCR analyses showed that samples of cocoa pod husk, mesocarp and seed tissues (testa, cotyledon and embryo) from the cross-pollinations were PCR negative for CSSV DNA. Sequential DNA samples from new leaves of seedlings resulting from the cross-pollinated trees were consistently PCR negative for presence of portions of CSSV DNA for over 36 months after germination. A reverse transcription-PCR analysis performed on the seedlings showed negative results, indicating absence of functional CSSV RNA transcripts in the seedlings. None of the seedlings exhibited symptoms characteristic of the CSSV disease, and all infectivity tests on the seedlings were also negative. Following these results, the study concluded that although CSSV DNA was detected in pollen from CSSV infected trees, there was no evidence of pollen transmission of the virus through cross-pollination from infected cocoa parents to healthy cocoa trees.
Resumo:
In this paper, we develop a method, termed the Interaction Distribution (ID) method, for analysis of quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological networks. The ID method can support assessment and inference of under-sampled ecological network data. In the current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The method can supplement existing network analyses based on two definitions of the underlying probabilities for each combination of pollinator and plant species: (1), pi,j: the probability for a visit made by the i’th pollinator species to take place on the j’th plant species; (2), qi,j: the probability for a visit received by the j’th plant species to be made by the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases with higher numbers of recorded visits.
Resumo:
Nest site selection in arboreal, domatia-dwelling ants, particularly those coexisting on a single host plant, is little understood. To examine this phenomenon we studied the African savannah tree Vachellia erioloba, which hosts ants in swollen-thorn domatia. We found four ant species from different genera (Cataulacus intrudens, Tapinoma subtile, Tetraponera ambigua and an unidentified Crematogaster species). In contrast to other African ant plants, many V. erioloba trees (41 % in our survey) were simultaneously co-occupied by more than one ant species. Our study provides quantitative field data describing: (1) aspects of tree and domatia morphology relevant to supporting a community of mutualist ants, (2) how ant species occupancy varies with domatia morphology and (3) how ant colony size varies with domatia size and species. We found that Crematogaster sp. occupy the largest thorns, followed by C. intrudens, with T. subtile in the smallest thorns. Thorn age, as well as nest entrance hole size correlated closely with ant species occupant. These differing occupancy patterns may help to explain the unusual coexistence of three ant species on individual myrmecophytic trees. In all three common ant species, colony size, as measured by total number of ants, increased with domatia size. Additionally, domatia volume and species identity interact to predict ant numbers, suggesting differing responses between species to increased availability of nesting space. The proportion of total ants in nests that were immatures varied with thorn volume and species, highlighting the importance of domatia morphology in influencing colony structure.
Resumo:
Pollination is an essential process in the sexual reproduction of seed plants and a key ecosystem service to human welfare. Animal pollinators decline as a consequence of five major global change pressures: climate change, landscape alteration, agricultural intensification, non-native species, and spread of pathogens. These pressures, which differ in their biotic or abiotic nature and their spatiotemporal scales, can interact in nonadditive ways (synergistically or antagonistically), but are rarely considered together in studies of pollinator and/or pollination decline. Management actions aimed at buffering the impacts of a particular pressure could thereby prove ineffective if another pressure is present. Here, we focus on empirical evidence of the combined effects of global change pressures on pollination, highlighting gaps in current knowledge and future research needs.
Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe
Resumo:
Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue.