992 resultados para amplitude estimation
Resumo:
Inverse problems based on using experimental data to estimate unknown parameters of a system often arise in biological and chaotic systems. In this paper, we consider parameter estimation in systems biology involving linear and non-linear complex dynamical models, including the Michaelis–Menten enzyme kinetic system, a dynamical model of competence induction in Bacillus subtilis bacteria and a model of feedback bypass in B. subtilis bacteria. We propose some novel techniques for inverse problems. Firstly, we establish an approximation of a non-linear differential algebraic equation that corresponds to the given biological systems. Secondly, we use the Picard contraction mapping, collage methods and numerical integration techniques to convert the parameter estimation into a minimization problem of the parameters. We propose two optimization techniques: a grid approximation method and a modified hybrid Nelder–Mead simplex search and particle swarm optimization (MH-NMSS-PSO) for non-linear parameter estimation. The two techniques are used for parameter estimation in a model of competence induction in B. subtilis bacteria with noisy data. The MH-NMSS-PSO scheme is applied to a dynamical model of competence induction in B. subtilis bacteria based on experimental data and the model for feedback bypass. Numerical results demonstrate the effectiveness of our approach.
Resumo:
The action potential (ap) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Biophysically detailed mathematical models of the ap have grown larger in terms of the variables and parameters required to model new findings in subcellular ionic mechanisms. The fitting of parameters to such models has seen a large degree of parameter and module re-use from earlier models. An alternative method for modelling electrically exciteable cardiac tissue is a phenomenological model, which reconstructs tissue level ap wave behaviour without subcellular details. A new parameter estimation technique to fit the morphology of the ap in a four variable phenomenological model is presented. An approximation of a nonlinear ordinary differential equation model is established that corresponds to the given phenomenological model of the cardiac ap. The parameter estimation problem is converted into a minimisation problem for the unknown parameters. A modified hybrid Nelder–Mead simplex search and particle swarm optimization is then used to solve the minimisation problem for the unknown parameters. The successful fitting of data generated from a well known biophysically detailed model is demonstrated. A successful fit to an experimental ap recording that contains both noise and experimental artefacts is also produced. The parameter estimation method’s ability to fit a complex morphology to a model with substantially more parameters than previously used is established.
Resumo:
Travel time is an important network performance measure and it quantifies congestion in a manner easily understood by all transport users. In urban networks, travel time estimation is challenging due to number of reasons such as, fluctuations in traffic flow due to traffic signals, significant flow to/from mid link sinks/sources, etc. The classical analytical procedure utilizes cumulative plots at upstream and downstream locations for estimating travel time between the two locations. In this paper, we discuss about the issues and challenges with classical analytical procedure such as its vulnerability to non conservation of flow between the two locations. The complexity with respect to exit movement specific travel time is discussed. Recently, we have developed a methodology utilising classical procedure to estimate average travel time and its statistic on urban links (Bhaskar, Chung et al. 2010). Where, detector, signal and probe vehicle data is fused. In this paper we extend the methodology for route travel time estimation and test its performance using simulation. The originality is defining cumulative plots for each exit turning movement utilising historical database which is self updated after each estimation. The performance is also compared with a method solely based on probe (Probe-only). The performance of the proposed methodology has been found insensitive to different route flow, with average accuracy of more than 94% given a probe per estimation interval which is more than 5% increment in accuracy with respect to Probe-only method.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.
Resumo:
Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.
Resumo:
One of the impediments to large-scale use of wind generation within power system is its variable and uncertain real-time availability. Due to the low marginal cost of wind power, its output will change the merit order of power markets and influence the Locational Marginal Price (LMP). For the large scale of wind power, LMP calculation can't ignore the essential variable and uncertain nature of wind power. This paper proposes an algorithm to estimate LMP. The estimation result of conventional Monte Carlo simulation is taken as benchmark to examine accuracy. Case study is conducted on a simplified SE Australian power system, and the simulation results show the feasibility of proposed method.
Resumo:
This paper describes modelling, estimation and control of the horizontal translational motion of an open-source and cost effective quadcopter — the MikroKopter. We determine the dynamics of its roll and pitch attitude controller, system latencies, and the units associated with the values exchanged with the vehicle over its serial port. Using this we create a horizontal-plane velocity estimator that uses data from the built-in inertial sensors and an onboard laser scanner, and implement translational control using a nested control loop architecture. We present experimental results for the model and estimator, as well as closed-loop positioning.
Resumo:
The research objectives of this thesis were to contribute to Bayesian statistical methodology by contributing to risk assessment statistical methodology, and to spatial and spatio-temporal methodology, by modelling error structures using complex hierarchical models. Specifically, I hoped to consider two applied areas, and use these applications as a springboard for developing new statistical methods as well as undertaking analyses which might give answers to particular applied questions. Thus, this thesis considers a series of models, firstly in the context of risk assessments for recycled water, and secondly in the context of water usage by crops. The research objective was to model error structures using hierarchical models in two problems, namely risk assessment analyses for wastewater, and secondly, in a four dimensional dataset, assessing differences between cropping systems over time and over three spatial dimensions. The aim was to use the simplicity and insight afforded by Bayesian networks to develop appropriate models for risk scenarios, and again to use Bayesian hierarchical models to explore the necessarily complex modelling of four dimensional agricultural data. The specific objectives of the research were to develop a method for the calculation of credible intervals for the point estimates of Bayesian networks; to develop a model structure to incorporate all the experimental uncertainty associated with various constants thereby allowing the calculation of more credible credible intervals for a risk assessment; to model a single day’s data from the agricultural dataset which satisfactorily captured the complexities of the data; to build a model for several days’ data, in order to consider how the full data might be modelled; and finally to build a model for the full four dimensional dataset and to consider the timevarying nature of the contrast of interest, having satisfactorily accounted for possible spatial and temporal autocorrelations. This work forms five papers, two of which have been published, with two submitted, and the final paper still in draft. The first two objectives were met by recasting the risk assessments as directed, acyclic graphs (DAGs). In the first case, we elicited uncertainty for the conditional probabilities needed by the Bayesian net, incorporated these into a corresponding DAG, and used Markov chain Monte Carlo (MCMC) to find credible intervals, for all the scenarios and outcomes of interest. In the second case, we incorporated the experimental data underlying the risk assessment constants into the DAG, and also treated some of that data as needing to be modelled as an ‘errors-invariables’ problem [Fuller, 1987]. This illustrated a simple method for the incorporation of experimental error into risk assessments. In considering one day of the three-dimensional agricultural data, it became clear that geostatistical models or conditional autoregressive (CAR) models over the three dimensions were not the best way to approach the data. Instead CAR models are used with neighbours only in the same depth layer. This gave flexibility to the model, allowing both the spatially structured and non-structured variances to differ at all depths. We call this model the CAR layered model. Given the experimental design, the fixed part of the model could have been modelled as a set of means by treatment and by depth, but doing so allows little insight into how the treatment effects vary with depth. Hence, a number of essentially non-parametric approaches were taken to see the effects of depth on treatment, with the model of choice incorporating an errors-in-variables approach for depth in addition to a non-parametric smooth. The statistical contribution here was the introduction of the CAR layered model, the applied contribution the analysis of moisture over depth and estimation of the contrast of interest together with its credible intervals. These models were fitted using WinBUGS [Lunn et al., 2000]. The work in the fifth paper deals with the fact that with large datasets, the use of WinBUGS becomes more problematic because of its highly correlated term by term updating. In this work, we introduce a Gibbs sampler with block updating for the CAR layered model. The Gibbs sampler was implemented by Chris Strickland using pyMCMC [Strickland, 2010]. This framework is then used to consider five days data, and we show that moisture in the soil for all the various treatments reaches levels particular to each treatment at a depth of 200 cm and thereafter stays constant, albeit with increasing variances with depth. In an analysis across three spatial dimensions and across time, there are many interactions of time and the spatial dimensions to be considered. Hence, we chose to use a daily model and to repeat the analysis at all time points, effectively creating an interaction model of time by the daily model. Such an approach allows great flexibility. However, this approach does not allow insight into the way in which the parameter of interest varies over time. Hence, a two-stage approach was also used, with estimates from the first-stage being analysed as a set of time series. We see this spatio-temporal interaction model as being a useful approach to data measured across three spatial dimensions and time, since it does not assume additivity of the random spatial or temporal effects.
Resumo:
This paper provides fundamental understanding for the use of cumulative plots for travel time estimation on signalized urban networks. Analytical modeling is performed to generate cumulative plots based on the availability of data: a) Case-D, for detector data only; b) Case-DS, for detector data and signal timings; and c) Case-DSS, for detector data, signal timings and saturation flow rate. The empirical study and sensitivity analysis based on simulation experiments have observed the consistency in performance for Case-DS and Case-DSS, whereas, for Case-D the performance is inconsistent. Case-D is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
Background: The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods: Typically developing children (n = 67) from Years 1 – 3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results: Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion: In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.
Resumo:
Objective: To comprehensively measure the burden of hepatitis B, liver cirrhosis and liver cancer in Shandong province, using disability-adjusted life years (DALYs) to estimate the disease burden attribute to hepatitis B virus (HBV)infection. Methods: Based on the mortality data of hepatitis B, liver cirrhosis and liver cancer derived from the third National Sampling Retrospective Survey for Causes of Death during 2004 and 2005, the incidence data of hepatitis B and the prevalence and the disability weights of liver cancer gained from the Shandong Cancer Prevalence Sampling Survey in 2007, we calculated the years of life lost (YLLs), years lived with disability (YLDs) and DALYs of three diseases following the procedures developed for the global burden of disease (GBD) study to ensure the comparability. Results: The total burden for hepatitis B, liver cirrhosis and liver cancer were 211 616 (39 377 YLLs and 172 239 YLDs), 16 783 (13 497 YLLs and 3286 YLDs) and 247 795 (240 236 YLLs and 7559 YLDs) DALYs in 2005 respectively, and men were 2.19, 2.36 and 3.16 times as that for women, respectively in Shandong province. The burden for hepatitis B was mainly because of disability (81.39%). However, most burden on liver cirrhosis and liver cancer were due to premature death (80.42% and 96.95%). The burden of each patient related to hepatitis B, liver cirrhosis and liver cancer were 4.8, 13.73 and 11.11 respectively. Conclusion: Hepatitis B, liver cirrhosis and liver cancer caused considerable burden to the people living in Shandong province, indicating that the control of hepatitis B virus infection would bring huge potential benefits.
Resumo:
Objective: To determine the major health related risk factors and provide evidence for policy-making,using health burden analysis on selected factors among general population from Shandong province. Methods: Based on data derived from the Third Death of Cause Sampling Survey in Shandong. Years of life lcrat(YLLs),yearS Iived with disability(YLDs)and disability-adjusted life years(DALYs) were calculated according to the GBD ethodology.Deaths and DALYs attributed to the selected risk factors were than estimated together with the PAF data from GBD 2001 study.The indirect method was employed to estimate the YLDs. Results: 51.09%of the total dearlls and 31.83%of the total DALYs from the Shandong population were resulted from the 19 selected risk factors.High blood pre.ure,smoking,low fruit and vegetable intake,aleohol consumption,indoor smoke from solid fuels,high cholesterol,urban air pollution, physical inactivity,overweight and obesity and unsafe injections in health care settings were identified as the top 10 risk faetors for mortality which together caused 50.21%of the total deaths.Alcohol use,smoking,high blood pressure,Low fruit and vegetable intake, indoor smoke from solid fuels, overweight and obesity,high cholesterol, physical inactivity,urban air pollution and iron-deficiency anemia were proved as the top 10 risk factors related to disease burden and were responsible for 29.04%of the total DALYs. Conclusion: Alcohol use.smoking and high blood pressure were determined as the major risk factors which influencing the health of residents in Shandong. The mortality and burden of disease could be reduced significantly if these major factors were effectively under control.