969 resultados para alternative protein
Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor
Resumo:
Clostridium difficile, a causative agent of antibiotic-associated diarrhea and its potentially lethal form, pseudomembranous colitis, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The level of toxin production appears to be critical for determining the severity of the disease, but the mechanism by which toxin synthesis is regulated is unknown. The product of a gene, txeR, that lies just upstream of the tox gene cluster was shown to be needed for tox gene expression in vivo and to activate promoter-specific transcription of the tox genes in vitro in conjunction with RNA polymerases from C. difficile, Bacillus subtilis, or Escherichia coli. TxeR was shown to function as an alternative sigma factor for RNA polymerase. Because homologs of TxeR regulate synthesis of toxins and a bacteriocin in other Clostridium species, TxeR appears to be a prototype for a novel mode of regulation of toxin genes.
Resumo:
The amino-terminal signaling domain of the Sonic hedgehog secreted protein (Shh-N), which derives from the Shh precursor through an autoprocessing reaction mediated by the carboxyl-terminal domain, executes multiple functions in embryonic tissue patterning, including induction of ventral and suppression of dorsal cell types in the developing neural tube. An apparent catalytic site within Shh-N is suggested by structural homology to a bacterial carboxypeptidase. We demonstrate here that alteration of residues presumed to be critical for a hydrolytic activity does not cause a loss of inductive activity, thus ruling out catalysis by Shh-N as a requirement for signaling. We favor the alternative, that Shh-N functions primarily as a ligand for the putative receptor Patched (Ptc). This possibility is supported by new evidence for direct binding of Shh-N to Ptc and by a strong correlation between the affinity of Ptc-binding and the signaling potency of Shh-N protein variants carrying alterations of conserved residues in a particular region of the protein surface. These results together suggest that direct Shh-N binding to Ptc is a critical event in transduction of the Shh-N signal.
Resumo:
Aip3p is an actin-interacting protein that regulates cell polarity in budding yeast. The Schizosaccharomyces pombe-sequencing project recently led to the identification of a homologue of Aip3p that we have named spAip3p. Our results confirm that spAip3p is a true functional homologue of Aip3p. When expressed in budding yeast, spAip3p localizes similarly to Aip3p during the cell cycle and complements the cell polarity defects of an aip3Δ strain. Two-hybrid analysis shows that spAip3p interacts with actin similarly to Aip3p. In fission yeast, spAip3p localizes to both cell ends during interphase and later organizes into two rings at the site of cytokinesis. spAip3p localization to cell ends is dependent on microtubule cytoskeleton, its localization to the cell middle is dependent on actin cytoskeleton, and both patterns of localization require an operative secretory pathway. Overexpression of spAip3p disrupts the actin cytoskeleton and cell polarity, leading to morphologically aberrant cells. Fission yeast, which normally rely on the microtubule cytoskeleton to establish their polarity axis, can use the actin cytoskeleton in the absence of microtubule function to establish a new polarity axis, leading to the formation of branched cells. spAip3p localizes to, and is required for, branch formation, confirming its role in actin-directed polarized cell growth in both Schizosaccharomyces pombe and Saccharomyces cerevisiae.
Resumo:
The natural developmental gradient of light-grown primary leaves of barley (Hordeum vulgare L.) was used to analyze the biogenesis of mitochondrial proteins in relation to the age and physiological changes within the leaf. The data indicate that the protein composition of mitochondria changes markedly during leaf development. Three distinct patterns of protein development were noted: group A proteins, consisting of the E1 β-subunit of the pyruvate dehydrogenase complex, ORF156, ORF577, alternative oxidase, RPS12, cytochrome oxidase subunits II and III, malic enzyme, and the α- and β-subunits of F1-ATPase; group B proteins, consisting of the E1 α-subunit of the pyruvate dehydrogenase complex, isocitrate dehydrogenase, HSP70A, cpn60C, and cpn60B; and group C proteins, consisting of the four subunits of the glycine decarboxylase complex (P, H, T, and L proteins), fumarase, and formate dehydrogenase. All of the proteins increased in concentration from the basal meristem to the end of the elongation zone (20.0 mm from the leaf base), whereupon group A proteins decreased, group B proteins increased to a maximum at 50 mm from the leaf base, and group C proteins increased to a maximum at the leaf tip. This study provides evidence of a marked heterogeneity of mitochondrial protein composition, reflecting a changing function as leaf cells develop photosynthetic and photorespiratory capacity.
Resumo:
A possible function for the alternative (nonphosphorylating) pathway is to stabilize the reduction state of the ubiquinone pool (Qr/Qt), thereby avoiding an increase in free radical production. If the Qr/Qt were stabilized by the alternative pathway, then Qr/Qt should be less stable when the alternative pathway is blocked. Qr/Qt increased when we exposed roots of Poa annua (L.) to increasing concentrations of KCN (an inhibitor of the cytochrome pathway). However, when salicylhydroxamic acid, an inhibitor of the alternative pathway, was added at the same time, Qr/Qt increased significantly more. Therefore, we conclude that the alternative pathway stabilizes Qr/Qt. Salicylhydroxamic acid increasingly inhibited respiration with increasing concentrations of KCN. In the experiments described here the alternative oxidase protein was invariably in its reduced (high-activity) state. Therefore, changes in the reduction state of the alternative oxidase cannot account for an increase in activity of the alternative pathway upon titration with KCN. The pyruvate concentration in intact roots increased only after the alternative pathway was blocked or the cytochrome pathway was severely inhibited. The significance of the pyruvate concentration and Qr/Qt on the activity of the alternative pathway in intact roots is discussed.
Resumo:
The expression of the alternative oxidase (AOX) was investigated during cotyledon development in soybean (Glycine max [L.] Merr.) seedlings. The total amount of AOX protein increased throughout development, not just in earlier stages as previously thought, and was correlated with the increase in capacity of the alternative pathway. Each AOX isoform (AOX1, AOX2, and AOX3) showed a different developmental trend in mRNA abundance, such that the increase in AOX protein and capacity appears to involve a shift in gene expression from AOX2 to AOX3. As the cotyledons aged, the size of the mitochondrial ubiquinone pool decreased. We discuss how this and other factors may affect the alternative pathway activity that results from the developmental regulation of AOX expression.
Resumo:
We conducted a coordinated biochemical and morphometric analysis of the effect of saline conditions on the differentiation zone of developing soybean (Glycine max L.) roots. Between d 3 and d 14 for seedlings grown in control or NaCl-supplemented medium, we studied (a) the temporal evolution of the respiratory alternative oxidase (AOX) capacity in correlation with the expression and localization of AOX protein analyzed by tissue-print immunoblotting; (b) the temporal evolution and tissue localization of a peroxidase activity involved in lignification; and (c) the structural changes, visualized by light microscopy and quantified by image digitization. The results revealed that saline stress retards primary xylem differentiation. There is a corresponding delay in the temporal pattern of AOX expression, which is consistent with the xylem-specific localization of AOX protein and the idea that this enzyme is linked to xylem development. An NaCl-induced acceleration of the development of secondary xylem was also observed. However, the temporal pattern of a peroxidase activity localized in the primary and secondary xylem was unaltered by NaCl treatment. Thus, the NaCl-stressed root was specifically affected in the temporal patterns of AOX expression and xylem development.
Resumo:
The replication terminator protein (RTP) of Bacillus subtilis is a homodimer that binds to each replication terminus and impedes replication fork movement in only one orientation with respect to the replication origin. The three-dimensional structure of the RTP-DNA complex needs to be determined to understand how structurally symmetrical dimers of RTP generate functional asymmetry. The functional unit of each replication terminus of Bacillus subtilis consists of four turns of DNA complexed with two interacting dimers of RTP. Although the crystal structure of the RTP apoprotein dimer has been determined at 2.6-A resolution, the functional unit of the terminus is probably too large and too flexible to lend itself to cocrystallization. We have therefore used an alternative strategy to delineate the three dimensional structure of the RTP-DNA complex by converting the protein into a site-directed chemical nuclease. From the pattern of base-specific cleavage of the terminus DNA by the chemical nuclease, we have mapped the amino acid to base contacts. Using these contacts as distance constraints, with the crystal structure of RTP, we have constructed a model of the DNA-protein complex. The biological implications of the model have been discussed.
Resumo:
The mechanism underlying the generation of soluble growth hormone binding protein (GHBP) probably differs among species. In rats and mice, it involves an alternatively spliced mRNA, whereas in rabbits, it involves limited proteolysis of the membrane-bound growth hormone receptor (GHR). In humans, this latter mechanism is favored, as no transcript coding for a soluble GHR has been detected so far. To test this hypothesis, we analyzed COS-7 cells transiently expressing the full-length human (h) GHR and observed specific GH-binding activity in the cell supernatants. Concomitantly, an alternatively spliced form in the cytoplasmic domain of GHR, hGHR-tr, was isolated from several human tissues. hGHR-tr is identical in sequence to hGHR, except for a 26-bp deletion leading to a stop codon at position 280, thereby truncating 97.5% of the intracellular domain of the receptor protein. When compared with hGHR, hGHR-tr showed a significantly increased capacity to generate a soluble GHBP. Interestingly, this alternative transcript is also expressed in liver from rabbits, mice, and rats, suggesting that, in these four species, proteolysis of the corresponding truncated transmembrane GHR is a common mechanism leading to GHBP generation. These findings support the hypothesis that GHBP may at least partly result from alternative splicing of the region encoding the intracellular domain and that the absence of a cytoplasmic domain may be involved in increased release of GHBP.
Resumo:
Few promoters are active at high levels in all cells. Of these, the majority encode structural RNAs transcribed by RNA polymerases I or III and are not accessible for the expression of proteins. An exception are the small nuclear RNAs (snRNAs) transcribed by RNA polymerase II. Although snRNA biosynthesis is unique and thought not to be compatible with synthesis of functional mRNA, we have tested these promoters for their ability to express functional mRNAs. We have used the murine U1a and U1b snRNA gene promoters to express the Escherichia coli lacZ gene and the human alpha-globin gene from either episomal or integrated templates by transfection, or infection into a variety of mammalian cell types. Equivalent expression of beta-galactosidase was obtained from < 250 nucleotides of 5'-flanking sequence containing the complete promoter of either U1 snRNA gene or from the 750-nt cytomegalovirus promoter and enhancer regions. The mRNA was accurately initiated at the U1 start site, efficiently spliced and polyadenylylated, and localized to polyribosomes. Recombinant adenovirus containing the U1b-lacZ chimeric gene transduced and expressed beta-galactosidase efficiently in human 293 cells and airway epithelial cells in culture. Viral vectors containing U1 snRNA promoters may be an attractive alternative to vectors containing viral promoters for persistent high-level expression of therapeutic genes or proteins.
Resumo:
We previously reported that KIF3A and KIF3B form a heterodimer that functions as a microtubule-based fast anterograde translocator of membranous organelles. We have also shown that this KIF3A/3B forms a complex with other associated polypeptides, named kinesin superfamily-associated protein 3 (KAP3). In the present study, we purified KAP3 protein by immunoprecipitation using anti-KIF3B antibody from mouse testis. Microsequencing was carried out, and we cloned the full-length KAP3 cDNA from a mouse brain cDNA library. Two isoforms of KAP3 exist [KAP3A (793 aa) and KAP3B (772 aa)], generated by alternative splicing in the carboxyl terminus region. Their amino acid sequences have no homology with those of any other known proteins, and prediction of their secondary structure indicated that almost the entire KAP3 molecule is alpha-helical. We produced recombinant KAP3 and KIF3A/3B using a baculovirus-Sf9 expression system. A reconstruction study in Sf9 cells revealed that KAP3 is a globular protein that binds to the tail domain of KIF3A/3B. The immunolocalization pattern of KAP3 was similar to that of KIF3A/3B in nerve cells. In addition, we found that KAP3 does not affect the motor activity of KIF3A/3B. KAP3 was associated with a membrane-bound form of KIF3A/3B in a fractional immunoprecipitation experiment, and since the KIF3 complex was found to bind to membranous organelles in an EM study, KAP3 may regulate membrane binding of the KIF3 complex.
Resumo:
A purine-rich splicing enhancer from a constitutive exon has been shown to shift the alternative splicing of calcitonin/CGRP pre-mRNA in vivo. Here, we demonstrate that the native repetitive GAA sequence comprises the optimal enhancer element and specifically binds a saturable complex of proteins required for general splicing in vitro. This complex contains a 37-kDa protein that directly binds the repetitive GAA sequence and SRp40, a member of the SR family of non-snRNP splicing factors. While purified SR proteins do not stably bind the repetitive GAA element, exogenous SR proteins become associated with the GAA element in the presence of nuclear extracts and stimulate GAA-dependent splicing. These results suggest that repetitive GAA sequences enhance splicing by binding a protein complex containing a sequence-specific RNA binding protein and a general splicing activator that, in turn, recruit additional SR proteins. This type of mechanism resembles the tra/tra-2-dependent recruitment of SR proteins to the Drosophila doublesex alternative splicing regulatory element.
Resumo:
Various compounds that affect signal transduction regulate the relative utilization of alternative processing pathways for the beta-amyloid precursor protein (beta APP) in intact cells, increasing the production of nonamyloidogenic soluble beta APP (s beta APP) and decreasing that of amyloidogenic beta-amyloid peptide. In a recent study directed toward elucidating the mechanisms underlying phorbol ester-stimulated s beta APP secretion from cells, it was demonstrated that protein kinase C increases the formation from the trans-Golgi network (TGN) of beta APP-containing secretory vesicles. Here we present evidence that forskolin increases s beta APP production from intact PC12 cells, and protein kinase A stimulates formation from the TGN of beta APP-containing vesicles. Although protein kinase A and protein kinase C converge at the level of formation from the TGN of beta APP-containing vesicles, additional evidence indicates that the regulatory mechanisms involved are distinct.
Resumo:
WT1 encodes a zinc-finger protein, expressed as distinct isoforms, that is inactivated in a subset of Wilms tumors. Both constitutional and somatic mutations disrupting the DNA-binding domain of WT1 result in a potentially dominant-negative phenotype. In generating inducible cell lines expressing wild-type isoforms of WT1 and WT1 mutants, we observed dramatic differences in the subnuclear localization of the induced proteins. The WT1 isoform that binds with high affinity to a defined DNA target, WT1(-KTS), was diffusely localized throughout the nucleus. In contrast, expression of an alternative splicing variant with reduced DNA binding affinity, WT1 (+KTS), or WT1 mutants with a disrupted zinc-finger domain resulted in a speckled pattern of expression within the nucleus. Although similar in appearance, the localization of WT1 variants to subnuclear clusters was clearly distinct from that of the essential splicing factor SC35, suggesting that WT1 is not directly involved in pre-mRNA splicing. Localization to subnuclear clusters required the N terminus of WT1, and coexpression of a truncated WT1 mutant and wild-type WT1(-KTS) resulted in their physical association, the redistribution of WT1(-KTS) from a diffuse to a speckled pattern, and the inhibition of its transactivational activity. These observations suggest that different WT1 isoforms and WT1 mutants have distinct subnuclear compartments. Dominant-negative WT1 proteins physically associate with wild-type WT1 in vivo and may result in its sequestration within subnuclear structures.
Resumo:
A previously undescribed 62-kDa protein (p62) that does not contain phosphotyrosine but, nevertheless, binds specifically to the isolated src homology 2 (SH2) domain of p56lck has been identified. The additional presence of the unique N-terminal region of p56lck prevents p62 binding to the SH2 domain. However, phosphorylation at Ser-59 (or alternatively, its mutation to Glu) reverses the inhibition and allows interaction of the p56lck SH2 domain with p62. Moreover, p62 is associated with a serine/threonine kinase activity and also binds to ras GTPase-activating protein, a negative regulator of the ras signaling pathway. Thus, phosphotyrosine-independent binding of p62 to the p56lck SH2 domain appears to provide an alternative pathway for p56lck signaling that is regulated by Ser-59 phosphorylation.