948 resultados para allophycocyanin beta subunit gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alpha subunit of the karyopherin heterodimer functions in recognition of the protein import substrate and the beta subunit serves to dock the trimeric complex to one of many sites on nuclear pore complex fibers. The small GTPase Ran and the Ran interactive protein, p10, function in the release of the docked complex. Repeated cycles of docking and release are thought to concentrate the transport substrate for subsequent diffusion into the nucleus. Ran-GTP dissociates the karyopherin heterodimer and forms a stoichiometric complex with Ran-GTP. Here we report the mapping of karyopherin beta's binding sites both for Ran-GTP and for karyopherin alpha. We discovered that karyopherin beta's binding site for Ran-GTP shows a striking sequence similarity to the cytoplasmic Ran-GTP binding protein, RanBP1. Moreover, we found that Ran-GTP and karyopherin alpha bind to overlapping sites on karyopherin beta. Having a higher affinity to the overlapping site, Ran-GTP displaces karyopherin alpha and binds to karyopherin beta. Competition for overlapping binding sites may be the mechanism by which GTP bound forms of other small GTPases function in corresponding dissociation-association reactions. We also mapped Ran's binding site for karyopherin beta to a cluster of basic residues analogous to those previously shown to constitute karyopherin alpha's binding site to karyopherin beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using genetically engineered glomerular mesangial cells, an in vivo gene transfer approach was developed that specifically targets the renal glomerulus. By combining this system with a tetracycline (Tc)-responsive promoter, the present study aimed to create a reversible on/off system for site-specific in vivo control of exogenous gene activity within the glomerulus. In the Tc regulatory system, a Tc-controlled transactivator (tTA) encoded by a regulator plasmid induces target gene transcription by binding to a tTA-responsive promoter located in a response plasmid. Tc inhibits this tTA-dependent transactivation via its affinity for tTA. In double-transfected cells, therefore, the activity of a transgene can be controlled by Tc. Cultured rat mesangial cells were cotransfected with a regulator plasmid and a response plasmid that introduces a beta-galactosidase gene. In vitro, stable double-transfectant MtTAG cells exhibited no beta-galactosidase activity in the presence of Tc. However, following withdrawal of Tc from culture media, expression of beta-galactosidase was induced within 24 h. When Tc was again added, the expression was rapidly resuppressed. Low concentrations of Tc were sufficient to maintain the silent state of tTA-dependent promoter. MtTAG cells were then transferred into the rat glomeruli via renal artery injection. In the isolated chimeric glomeruli, expression of beta-galactosidase was induced ex vivo in the absence of Tc, whereas it was repressed in its presence. When Tc-pretreated MtTAG cells were transferred into the glomeruli of untreated rats, beta-galactosidase expression was induced in vivo within 3 days. Oral administration of Tc dramatically suppressed this induction. These data demonstrate the feasibility of using mesangial cell vectors combined with the Tc regulatory system for site-specific in vivo control of exogenous gene expression in the glomerulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The (3;21)(q26;q22) translocation associated with treatment-related myelodysplastic syndrome, treatment-related acute myeloid leukemia, and blast crisis of chronic myeloid leukemia results in the expression of the chimeric genes AML1/EAP, AML1/MDS1, and AML1/EVI1. AML1 (CBFA2), which codes for the alpha subunit of the heterodimeric transcription factor CBF, is also involved in the t(8;21), and the gene coding for the beta subunit (CBFB) is involved in the inv(16). These are two of the most common recurring chromosomal rearrangements in acute myeloid leukemia. CBF corresponds to the murine Pebp2 factor, and CBF binding sites are found in a number of eukaryotic and viral enhancers and promoters. We studied the effects of AML1/EAP and AML1/MDS1 at the AML1 binding site of the CSF1R (macrophage-colony-stimulating factor receptor gene) promoter by using reporter gene assays, and we analyzed the consequences of the expression of both chimeric proteins in an embryonic rat fibroblast cell line (Rat1A) in culture and after injection into athymic nude mice. Unlike AML1, which is an activator of the CSF1R promoter, the chimeric proteins did not transactivate the CSF1R promoter site but acted as inhibitors of AML1 (CBFA2). AML1/EAP and AML1/MDS1 expressed in adherent Rat1A cells decreased contact inhibition of growth, and expression of AML1/MDS1 was associated with acquisition of the ability to grow in suspension culture. Expression of AML1/MDS1 increased the tumorigenicity of Rat1A cells injected into athymic nude mice, whereas AML1/EAP expression prevented tumor growth. These results suggest that expression of AML1/EAP and AML1/MDS1 can interfere with normal AML1 function, and that AML1/MDS1 has tumor-promoting properties in an embryonic rat fibroblast cell line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In immature T cells the T-cell receptor (TCR) beta-chain gene is rearranged and expressed before the TCR alpha-chain gene. At this stage TCR beta chain can form disulfide-linked heterodimers with the pre-T-cell receptor alpha chain (pTalpha). Using the recently isolated murine pTalpha cDNA as a probe, we have isolated the human pTalpha cDNA. The complete nucleotide sequence predicts a mature protein of 282 aa consisting of an extracellular immunoglobulin-like domain, a connecting peptide, a transmembrane region, and a long cytoplasmic tail. Amino acid sequence comparison of human pTalpha with the mouse pTalpha molecule reveals high sequence homology in the extracellular as well as the transmembrane region. In contrast, the cytoplasmic region differs in amino acid composition and in length from the murine homologue. The human pTalpha gene is expressed in immature but not mature T cells and is located at the p21.2-p12 region of the short arm of chromosome 6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta zero-Thalassemia is an inherited disorder characterized by the absence of beta-globin polypeptides derived from the affected allele. The molecular basis for this deficiency is a mutation of the adult beta-globin structural gene or cis regulatory elements that control beta-globin gene expression. A mouse model of this disease would enable the testing of therapeutic regimens designed to correct the defect. Here we report a 16-kb deletion that includes both adult beta-like globin genes, beta maj and beta min, in mouse embryonic stem cells. Heterozygous animals derived from the targeted cells are severely anemic with dramatically reduced hemoglobin levels, abnormal red cell morphology, splenomegaly, and markedly increased reticulocyte counts. Homozygous animals die in utero; however, heterozygous mice are fertile and transmit the deleted allele to progeny. The anemic phenotype is completely rescued in progeny derived from mating beta zero-thalassemic animals with transgenic mice expressing high levels of human hemoglobin A. The beta zero-thalassemic mice can be used to test genetic therapies for beta zero-thalassemia and can be bred with transgenic mice expressing high levels of human hemoglobin HbS to produce an improved mouse model of sickle cell disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive proteolytic digestion of Na+,K(+)-ATPase (EC 3.6.1.37) by trypsin produces a preparation where most of the extramembrane portions of the alpha subunit have been digested away and the beta subunit remains essentially intact. The fragment Gln-737-Arg-829 of the Na+,K(+)-ATPase alpha subunit, which includes the putative transmembrane hairpin M5-M6, is readily, selectively, and irreversibly released from the posttryptic membrane preparation after incubation at 37 degrees C for several minutes. Once released from the membrane, the fragment aggregates but remains water soluble. Occlusion of K+ or Rb+ specifically prevents release of the Gln-737-Arg-829 fragment into the supernatant. Labeling of the posttryptic membrane preparation with cysteine-directed reagents revealed that Cys-802 (which is thought to be located within the M6 segment) is protected against the modification by Rb+ while this fragment is in the membrane but can be readily modified upon release. Cation occlusion apparently alters the folding and/or disposition of the M5-M6 fragment in the membrane in a way that does not occur when the fragment migrates to the aqueous phase. The ligand-dependent disposition of the M5-M6 hairpin in the membrane along with recent labeling studies suggest a key role for this segment in cation pumping by Na+,K(+)-ATPase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the generation of a retroviral vector that infects human cells specifically through recognition of the low density lipoprotein receptor. The rationale for this targeted infection is to add onto the ecotropic envelope protein of Moloney murine leukemia virus, normally trophic for murine cells, a single-chain variable fragment derived from a monoclonal antibody recognizing the human low density lipoprotein receptor. This chimeric envelope protein was used to construct a packaging cell line producing a retroviral vector capable of high-efficiency transfer of the Escherichia coli beta-galactosidase gene to human cells expressing low density lipoprotein receptor. This approach offers a generalized plan to generate cell and tissue-specific retroviral vectors, an essential step toward in vivo gene therapy strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of NusA on the RNA polymerase contacts made by nucleotides at internal positions in the nascent RNA in Escherichia coli transcription complexes were analyzed by using the photocrosslinking nucleotide analog 5-[(4-azidophenacyl) thio]-UMP. It was placed at nucleotides between +6 and +15 in RNA transcribed from the phage lambda PR' promoter. Crosslinks of analog in these positions in RNAs which contained either 15, 28, 29, or 49 nt were examined. Contacts between the nascent RNA and proteins in the transcription complex were analyzed as the RNA was elongated, by placing the crosslinker nearest the 5' end of the RNA 10, 23, 24, or 44 nt away from the 3' end. The beta or beta' subunit of polymerase, and NusA when added, were contacted by RNA from 15 to 49 nt long. When the upstream crosslinker was 24 nt from the 3" end of the RNA (29-nt RNA), alpha was also contacted in the absence of NusA. The addition of NusA prevented RNA crosslinking to alpha. When the crosslinker was 44 nt from the 3' end (49-nt RNA), alpha crosslinks were still observed, but crosslinks to beta or beta' and NusA were greatly diminished. RNA crosslinking to alpha, and loss of this crosslink when NusA was added, was observed in the presence of NusB, NusE, and NusG and when transcription was carried out in the presence of an E. coli S100 cell extract. Peptide mapping localized the RNA interactions to the C-terminal domain of alpha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TCR is an alpha beta heterodimer, a part of the multimeric structure through which physiological T-cell activation occurs. The expression of TCR alpha chain is greatly diminished in a beta-chain-deficient mutant Jurkat cell line (J.RT3-T3.5). The relationship between the expression of the TCR alpha and beta chains has been examined by stable transfection of a series of TCR beta-chain mutant constructs into this mutant cell line. The level of alpha-chain transcript was dramatically upregulated by the expression of the beta chain and specifically by a transcript of the beta-chain variable region alone, including a transcript in which the ATG start codon was mutated. The downregulation of the endogenous alpha-chain transcripts in mutants cells lacking complete beta-chain transcripts occurred primarily at the posttranscriptional level. This evidence for a regulatory function of the TCR beta-chain gene represents an unusual regulatory pathway in which the transcript of one gene is required for the optimal expression of another gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have evaluated the transformation efficiency of two lettuce ( Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens- mediated gene transfer. Six- day- old cotyledons were co- cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the beta- glucuronidase gene ( GUS) under the control of the cauliflower mosaic virus 35S promoter ( CaMV 35S), while the second construct contained the ethylene mutant receptor etr1- 1, which confers ethylene insensitivity, under the control of a leaf senescence- specific promoter ( sag12). Tissues co- cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co- cultivated with Agrobacteria carrying the etr1- 1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained ( 2.86%). These results indicate that the ethylene insensitivity conferred by the etr1- 1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sliding clamp of the Escherichia coli replisome is now understood to interact with many proteins involved in DNA synthesis and repair. A universal interaction motif is proposed to be one mechanism by which those proteins bind the E. coli sliding clamp, a homodimer of the beta subunit, at a single site on the dimer. The numerous beta(2)-binding proteins have various versions of the consensus interaction motif, including a related hexameric sequence. To determine if the variants of the motif could contribute to the competition of the beta-binding proteins for the beta(2) site, synthetic peptides derived from the putative beta(2)-binding motifs were assessed for their abilities to inhibit protein-beta(2) interactions, to bind directly to beta(2), and to inhibit DNA synthesis in vitro. A hierarchy emerged, which was consistent with sequence similarity to the pentameric consensus motif, QL(S/D)LF, and peptides containing proposed hexameric motifs were shown to have activities comparable to those containing the consensus sequence. The hierarchy of peptide binding may be indicative of a competitive hierarchy for the binding of proteins to beta(2) in various stages or circumstances of DNA replication and repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of auxiliary calcium channel subunits on the expression and functional properties of high-voltage activated (HVA) calcium channels have been studied extensively in the Xenopus oocyte expression system, but are less completely characterized in a mammalian cellular environment. Here, we provide the first systematic analysis of the effects of calcium channel beta and alpha(2)-delta subunits on expression levels and biophysical properties of three different types (Ca(v)1.2, Ca(v)2.1 and Ca(v)2.3) of HVA calcium channels expressed in tsA-201 cells. Our data show that Ca(v)1.2 and Ca(v)2.3 channels yield significant barium current in the absence of any auxiliary subunits. Although calcium channel beta subunits were in principle capable of increasing whole cell conductance, this effect was dependent on the type of calcium channel alpha(1) subunit, and beta(3) subunits altogether failed to enhance current amplitude irrespective of channel subtype. Moreover, the alpha(2)-delta subunit alone is capable of increasing current amplitude of each channel type examined, and at least for members of the Ca(v)2 channel family, appears to act synergistically with beta subunits. In general agreement with previous studies, channel activation and inactivation gating was regulated both by beta and by alpha(2)-delta subunits. However, whereas pronounced regulation of inactivation characteristics was seen with the majority of the auxiliary subunits, effects on voltage dependence of activation were only small (< 5 mV). Overall, through a systematic approach, we have elucidated a previously underestimated role of the alpha(2)-delta(1) subunit with regard to current enhancement and kinetics. Moreover, the effects of each auxiliary subunit on whole cell conductance and channel gating appear to be specifically tailored to subsets of calcium channel subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that P auxiliary subunits increase current amplitude in voltage-dependent calcium channels. In this study, however, we found a hovel inhibitory effect of beta3 Subunit on macroscopic Ba2+ currents through recombinant N- and R-type calcium channels expressed in Xenopus oocytes. Overexpressed beta3 (12.5 ng/ cell cRNA) significantly suppressed N- and R-type, but not L-type, calcium channel currents at physiological holding potentials (HPs) of -60 and -80 mV At a HP of -80 mV, coinjection of various concentrations (0-12.5 ng) of the beta3 with Ca,.2.2alpha(1) and alpha(2)delta enhanced the maximum conductance of expressed channels at lower beta3 concentrations but at higher concentrations (>2.5 ng/cell) caused a marked inhibition. The beta3-induced Current suppression was reversed at a HP of - 120 mV, suggesting that the inhibition was voltage dependent. A high concentration of Ba-2divided by (40 mM) as a charge carrier also largely diminished the effect of P3 at -80 mV Therefore, experimental conditions (HP, divalent cation concentration, and P3 subunit concentration) approaching normal physiological conditions were critical to elucidate the full extent of this novel P3 effect. Steady-state inactivation curves revealed that N-type channels exhibited closed-state inactivation without P3, and that P3 caused an similar to40 mV negative shift of the inactivation, producing a second component with an inactivation midpoint of approximately -85 mV The inactivation of N-type channels in the presence of a high concentration (12.5 ng/cell) of P3 developed slowly and the time-dependent inactivation curve was best fit by the sum of two exponential functions with time constants of 14 s and 8.8 min at -80 mV Similar ultra-slow inactivation was observed for N-type channels Without P3. Thus, P3 can have a profound negative regulatory effect on N-type (and also R-type) calcium channels by Causing a hyperpolarizing shift of the inactivation without affecting ultra-slow and closed-state inactivation properties.