770 resultados para affective computing
Resumo:
Increased focus on energy cost savings and carbon footprint reduction efforts improved the visibility of building energy simulation, which became a mandatory requirement of several building rating systems. Despite developments in building energy simulation algorithms and user interfaces, there are some major challenges associated with building energy simulation; an important one is the computational demands and processing time. In this paper, we analyze the opportunities and challenges associated with this topic while executing a set of 275 parametric energy models simultaneously in EnergyPlus using a High Performance Computing (HPC) cluster. Successful parallel computing implementation of building energy simulations will not only improve the time necessary to get the results and enable scenario development for different design considerations, but also might enable Dynamic-Building Information Modeling (BIM) integration and near real-time decision-making. This paper concludes with the discussions on future directions and opportunities associated with building energy modeling simulations.
Resumo:
Primary objective: To investigate whether assessment method influences the type of post-concussion-like symptoms. Methods and procedures: Participants were 73 Australian undergraduate students (Mage = 24.14, SD = 8.84; 75.3% female) with no history of mild traumatic brain injury (mTBI). Participants reported symptoms experienced over the previous 2 weeks in response to an open-ended question (free report), mock interview and standardized checklist (British Columbia Post-concussion Symptom Inventory; BC-PSI). Main outcomes and results: In the free report and checklist conditions, cognitive symptoms were reported significantly less frequently than affective (free report: p < 0.001; checklist: p < 0.001) or somatic symptoms (free report: p < 0.001; checklist: p = 0.004). However, in the mock structured interview condition, cognitive and somatic symptoms were reported significantly less frequently than affective symptoms (both p < 0.001). No participants reported at least one symptom from all three domains when assessed by free report, whereas most participants did so when symptoms were assessed by a mock structured interview (75%) or checklist (90%). Conclusions: Previous studies have shown that the method used to assess symptoms affects the number reported. This study shows that the assessment method also affects the type of reported symptoms.
Resumo:
Biological systems are typically complex and adaptive, involving large numbers of entities, or organisms, and many-layered interactions between these. System behaviour evolves over time, and typically benefits from previous experience by retaining memory of previous events. Given the dynamic nature of these phenomena, it is non-trivial to provide a comprehensive description of complex adaptive systems and, in particular, to define the importance and contribution of low-level unsupervised interactions to the overall evolution process. In this chapter, the authors focus on the application of the agent-based paradigm in the context of the immune response to HIV. Explicit implementation of lymph nodes and the associated lymph network, including lymphatic chain structure, is a key objective, and requires parallelisation of the model. Steps taken towards an optimal communication strategy are detailed.
Resumo:
Background Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model. Results Lymph nodes are explicitly implemented, and considerations on parallel computing permit large simulations and the inclusion of local features. The results obtained show that GI tract inclusion in the model leads to an accelerated disease progression, during both the early stages and the long-term evolution, compared to a theoretical, uniform model. Conclusions These results confirm the potential of treatment policies currently under investigation, which focus on this region. They also highlight the potential of this modelling framework, incorporating both agent-based and network-based components, in the context of complex systems where scaling-up alone does not result in models providing additional insights.
Resumo:
Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.
Resumo:
Several algorithms and techniques widely used in Computer Science have been adapted from, or inspired by, known biological phenomena. This is a consequence of the multidisciplinary background of most early computer scientists. The field has now matured, and permits development of tools and collaborative frameworks which play a vital role in advancing current biomedical research. In this paper, we briefly present examples of the former, and elaborate upon two of the latter, applied to immunological modelling and as a new paradigm in gene expression.
Resumo:
One of the main challenges in data analytics is that discovering structures and patterns in complex datasets is a computer-intensive task. Recent advances in high-performance computing provide part of the solution. Multicore systems are now more affordable and more accessible. In this paper, we investigate how this can be used to develop more advanced methods for data analytics. We focus on two specific areas: model-driven analysis and data mining using optimisation techniques.
Resumo:
As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.
Resumo:
The research field of urban computing – defined as “the integration of computing, sensing, and actuation technologies into everyday urban settings and lifestyles” – considers the design and use of ubiquitous computing technology in public and shared urban environments. Its impact on cities, buildings, and spaces evokes innumerable kinds of change. Embedded into our everyday lived environments, urban computing technologies have the potential to alter the meaning of physical space, and affect the activities performed in those spaces. This paper starts a multi-themed discussion of various aspects that make up the, at times, messy and certainly transdisciplinary field of urban computing and urban informatics.
Resumo:
This two-study paper examines the detrimental impact of workgroup mistreatment and the mediating role of perceived rejection. In Study 1, perceived rejection emerged as a mediator between workgroup mistreatment and depression, organization-based self-esteem, organizational deviance, and organizational citizenship behaviors. In Study 2, the role of organizational norms was examined. Employees who experienced supportive organizational norms reported lower levels of perceived rejection, depression and turnover intentions, and higher levels of organization-based self-esteem and job satisfaction. Employees in the supportive norms condition reported that they were more likely to seek reconciliation after experiencing mistreatment than those who experienced low support. Perceived rejection also emerged as a mediator. Results, practical implications, and future research directions are discussed.
Resumo:
In this study, the authors pay particular attention to mistreatment directed toward an organizational member from fellow workgroup members. The study contributes to the growing body of literature that examines the mistreatment of employees in the workplace. The authors propose that mistreatment by the workgroup would contribute to feelings of rejection, over and above mistreatment by the supervisor. In addition, the authors tested the mediating role of perceived rejection between workgroup mistreatment and affective outcomes such as depression and organization-based self-esteem. Part-time working participants (N = 142) took part in the study, which required them to complete a questionnaire on workplace behaviors. Results indicated that workgroup mistreatment contributed additional variance to perceived rejection over and above supervisory mistreatment when predicting depression and organization-based self-esteem. The results also indicated that perceived rejection mediates the relationship between mistreatment and affective outcomes. Results are discussed and implications for research and practice are considered.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
Cloud computing has significantly impacted a broad range of industries, but these technologies and services have been absorbed throughout the marketplace unevenly. Some industries have moved aggressively towards cloud computing, while others have moved much more slowly. For the most part, the energy sector has approached cloud computing in a measured and cautious way, with progress often in the form of private cloud solutions rather than public ones, or hybridized information technology systems that combine cloud and existing non-cloud architectures. By moving towards cloud computing in a very slow and tentative way, however, the energy industry may prevent itself from reaping the full benefit that a more complete migration to the public cloud has brought about in several other industries. This short communication is accordingly intended to offer a high-level overview of cloud computing, and to put forward the argument that the energy sector should make a more complete migration to the public cloud in order to unlock the major system-wide efficiencies that cloud computing can provide. Also, assets within the energy sector should be designed with as much modularity and flexibility as possible so that they are not locked out of cloud-friendly options in the future.