910 resultados para additive manufacturing, bioreactor, tissue engineering, biofabrication, custom-made scaffolds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma polymerization was used to coat a melt electrospun polycaprolactone scaffold to improve cell attachment and organization. Plasma polymerization was performed using an amine containing monomer, allylamine, which then allowed for the subsequent immobilization of biomolecules i.e. heparin and fibroblast growth factor-2. The stability of the plasma polymerized amine-coating was demonstrated by X-ray photoelectron spectroscopy analysis and imaging time-of-flight secondary ion mass spectrometry revealed that a uniform plasma amine-coating was deposited throughout the scaffold. Based upon comparison with controls it was evident that the combination scaffold aided cell ingress and the formation of distinct fibroblast and keratinocyte layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to investigate the use of custom-made orthopedic shoes (OS) and the association between the use of OS and the most relevant aspects of their usability. Over a 6-month period, patients meeting the inclusion criteria were recruited by 12 orthopedic shoe companies scattered throughout the Netherlands and asked to complete a questionnaire composed of a pre- and post-OS section. Patients with different pathologies were included in the study (n = 339; response 67%). Mean age of the patients was 63 +/- 15 years, and 38% were male. Three months after delivery, 81% of the patients used their OS frequently (4-7 days/week), 13% occasionally (1-3 days/week), and 6% did not use their OS. Associations were found between use and all measured aspects of usability (p-values varied from <0.001 to 0.028). Patients who used their OS more often had a more positive opinion regarding all the aspects of usability. We conclude that all aspects of the usability of OS are relevant in relation to their use and should be taken into account when prescribing and evaluating OS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate the association between patients' expectations and the actual use of custom-made orthopaedic shoes. Design: A prospective cohort study with internal comparison. Setting: Twelve orthopaedic shoe companies. Patients: During six months, consecutive patients who were provided with their first ever pair of orthopaedic shoes and aged 16 years or older were recruited. A total of 339 patients with different pathologies were included (response 67%). Mean (SD) age of the patients was 63 (15) years, and 129 patients (38%) were male. Main measures: A practical and reproducible questionnaire, measuring: frequency of use of orthopaedic shoes, patients' expectations and experiences of aspects of the usability of orthopaedic shoes, and communication about patients' expectations. Results: Patients' expectations were not associated with the use of orthopaedic shoes (P-values range: 0.106 to 0.607), but the difference between expectations and experiences was (P-values range: <0.001 to 0.012). The expectations of patients who frequently used their orthopaedic shoes were in concordance with their experiences, whereas the expectations of patients who did not use their orthopaedic shoes were much higher than their experiences. There was no communication of patients' expectations with the medical specialist or orthopaedic shoe technician in 34% and 25% of the patients respectively. Conclusions: In relation to the actual use of orthopaedic shoes, it is crucial that patients' expectations are not much higher than their experiences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated long-term use of custom-made orthopedic shoes (OS) at 1.5 years follow-up. In addition, the association between short-term outcomes and long-term use was studied. Patients from a previously published study who did use their first-ever pair of OS 3 months after delivery received another questionnaire after 1.5 years. Patients with different pathologies were included in the study (n = 269, response = 86%). Mean age was 63 ± 14 years, and 38% were male. After 1.5 years, 87% of the patients still used their OS (78% frequently [4-7 days/week] and 90% occasionally [1-3 days/week]) and 13% of the patients had ceased using their OS. Patients who were using their OS frequently after 1.5 years had significantly higher scores for 8 of 10 short-term usability outcomes (p-values ranged from <0.001 to 0.046). The largest differences between users and nonusers were found for scores on the short-term outcomes of OS fit and communication with the medical specialist and shoe technician (effect size range = 0.16 to 0.46). We conclude that patients with worse short-term usability outcomes for their OS are more likely to use their OS only occasionally or not at all at long-term follow-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To develop a short and easy to use questionnaire to measure use and usability of custom-made orthopaedic shoes, and to investigate its reproducibility. DESIGN Development of the questionnaire (Monitor Orthopaedic Shoes) was based on a literature search, expert interviews, 2 expert meetings, and exploration and testing of reproducibility. The questionnaire comprises 2 parts: a pre part, measuring expectations; and a post part, measuring experiences. Patients The pre part of the final version was completed twice by 37 first-time users before delivery of their orthopaedic shoes. The post part of the final version was completed twice by 39 first-time users who had worn their orthopaedic shoes for 2–4 months. RESULTS High reproducibility scores (Cohen’s kappa > 0.60 or intra class correlation > 0.70) were found in all but one question of both parts of the final version of the Monitor Orthopaedic Shoes questionnaire. The smallest real difference on a visual analogue scale (100 mm) ranged from 21 to 50 mm. It took patients approximately 15 minutes to complete one part. CONCLUSION Monitor Orthopaedic Shoes is a practical and reproducible questionnaire that can measure relevant aspects of use and usability of orthopaedic shoes from a patient’s perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Despite potential benefits, some patients decide not to use their custom-made orthopaedic shoes (OS). Factors are known in the domains ‘usability’, ‘communication and service’, and ‘opinion of others’ that influence a patient’s decision to use OS. However, the interplay between these factors has never been investigated. The aim of this study was to explore the interplay between factors concerning OS, and the influences thereof on a patient’s decision to use OS. Methods A mixed-methods design was used, combining qualitative and quantitative data by means of sequential data analysis and triangulation. Priority was given to the qualitative part. Qualitative data was gathered with a semi-structured interview covering the three domains. Data was analysed using the framework approach. Quantitative data concerned the interplay between factors and determining a rank-order for the importance of factors of ‘usability’. Results A patient’s decision to use OS was influenced by various factors indicated as being important and by acceptance of their OS. Factors of ‘usability’ were more important than factors of ‘communication’; the ‘opinion of others’ was of limited importance. An improvement of walking was indicated as the most important factor of ‘usability’. The importance of other factors (cosmetic appearance and ease of use) was determined by reaching a compromise between these factors and an improvement of walking. Conclusions A patient’s decision to use OS is influenced by various factors indicated as being important and by acceptance of their OS. An improvement of walking is the most important factor of ‘usability’, the importance of other factors (cosmetic appearance and ease of use) is determined by reaching compromises between these factors and an improvement of walking. Communication is essential to gain insight in a patient’s acceptance and in the compromises they are willing to reach. This makes communication the key for clinicians to influence a patient’s decision to use OS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient and effective growth factor (GF) delivery is an ongoing challenge for tissue regeneration therapies. The accurate quantification of complex molecules such as GFs, encapsulated in polymeric delivery devices, is equally critical and just as complex as achieving efficient delivery of active GFs. In this study, GFs relevant to bone tissue formation, vascular endothelial growth factor (VEGF) and bone morphogenetic protein 7 (BMP-7), were encapsulated, using the technique of electrospraying, into poly(lactic-co-glycolic acid) microparticles that contained poly(ethylene glycol) and trehalose to assist GF bioactivity. Typical quantification procedures, such as extraction and release assays using saline buffer, generated a significant degree of GF interactions, which impaired accurate assessment by enzyme-linked immunosorbent assay (ELISA). When both dry BMP-7 and VEGF were processed with chloroform, as is the case during the electrospraying process, reduced concentrations of the GFs were detected by ELISA; however, the biological effect on myoblast cells (C2C12) or endothelial cells (HUVECs) was unaffected. When electrosprayed particles containing BMP-7 were cultured with preosteoblasts (MC3T3-E1), significant cell differentiation into osteoblasts was observed up to 3 weeks in culture, as assessed by measuring alkaline phosphatase. In conclusion, this study showed how electrosprayed microparticles ensured efficient delivery of fully active GFs relevant to bone tissue engineering. Critically, it also highlights major discrepancies in quantifying GFs in polymeric microparticle systems when comparing ELISA with cell-based assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter presents a brief history of the development of ophthalmic biomaterials. Particularities in the development of ophthalmic biomaterials are discussed and some of their historic priorities within the general field of biomaterials are revealed or emphasized. The chapter then discusses the role and integration of ophthalmic biomaterials in tissue engineering and regenerative medicine applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to “make the model organism mouse more human.” To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present in vitro research was to investigate cardiac tissue cell functions (specifically cardiomyocytes and neurons) on poly(lactic-co-glycolic acid) (PLGA) (50:50 wt.%)-carbon nanofiber (CNF) composites to ascertain their potential for myocardial tissue engineering applications. CNF were added to biodegradable PLGA to increase the conductivity and cytocompatibility of pure PLGA. For this reason, different PLGA:CNF ratios (100:0, 75:25, 50:50,25:75, and 0:100 wt.%) were used and the conductivity as well as cytocompatibility of cardiomyocytes and neurons were assessed. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy analysis characterized the microstructure, chemistry, and crystallinity of the materials of interest to this study. The results show that PLGA:CNF materials are conductive and that the conductivity increases as greater amounts of CNF are added to PLGA, from OS m(-1) for pure PLGA (100:0 wt.%) to 5.5 x 10(-3) S m(-1) for pure CNF (0:100 wt.%). The results also indicate that cardiomyocyte density increases with greater amounts of CNF in PLGA (up to 25:75 wt.% PLGA:CNF) for up to 5 days. For neurons a similar trend to cardiomyocytes was observed, indicating that these conductive materials promoted the adhesion and proliferation of two cell types important for myocardial tissue engineering applications. This study thus provides, for the first time, an alternative conductive scaffold using nanotechnology which should be further explored for cardiovascular applications. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of tissue engineering scaffolds necessitates amalgamation of a multitude of attributes including a desirable porosity to encourage vascular invasion, desired surface chemistry for controlled deposition of calcium phosphate-based mineral as well as ability to support attachment, proliferation, and differentiation of lineage specific progenitor cells. Scaffold fabrication often includes additional surface treatments to bring about desired changes in the surface chemistry. In this perspective, this review documents the important natural and synthetic scaffolds fabricated for bone tissue engineering applications in tandem with the surface treatment techniques to maneuver the biocompatibility of engineered scaffolds. This review begins with a discussion on the fundamental concepts related to biocompatibility as well as the characteristics of the biological micro-environment. The primary focus is to discuss the effects of surface micro/nano patterning on the modulation of bone cell response. Apart from reviewing a host of experimental studies reporting the functionality of osteoblast-like bone cells and stem cells on surface modified or textured bioceramic/biopolymer scaffolds, theoretical insights to predict cell behavior on a scaffold with different topographical features are also briefly analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological machines are active devices that are comprised of cells and other biological components. These functional devices are best suited for physiological environments that support cellular function and survival. Biological machines have the potential to revolutionize the engineering of biomedical devices intended for implantation, where the human body can provide the required physiological environment. For engineering such cell-based machines, bio-inspired design can serve as a guiding platform as it provides functionally proven designs that are attainable by living cells. In the present work, a systematic approach was used to tissue engineer one such machine by exclusively using biological building blocks and by employing a bio-inspired design. Valveless impedance pumps were constructed based on the working principles of the embryonic vertebrate heart and by using cells and tissue derived from rats. The function of these tissue-engineered muscular pumps was characterized by exploring their spatiotemporal and flow behavior in order to better understand the capabilities and limitations of cells when used as the engines of biological machines.