353 resultados para Zeros de polinômios
Resumo:
Analyticity and unitarity techniques are employed to estimate Taylor coefficients of the pion electromagnetic form factor at t = 0 by exploiting the recently evaluated two-pion contribution to the muon (g -aEuro parts per thousand 2) and the phase of the pion electromagnetic form factor in the elastic region, known from pi pi scattering by Fermi-Watson theorem and the values of the form factor at several points in the space-like region. Regions in the complex t-plane are isolated where the form factor cannot have zeros.
Resumo:
Transient signals such as plosives in speech or Castanets in audio do not have a specific modulation or periodic structure in time domain. However, in the spectral domain they exhibit a prominent modulation structure, which is a direct consequence of their narrow time localization. Based on this observation, a spectral-domain AM-FM model for transients is proposed. The spectral AM-FM model is built starting from real spectral zero-crossings. The AM and FM correspond to the spectral envelope (SE) and group delay (GD), respectively. Taking into account the modulation structure and spectral continuity, a local polynomial regression technique is proposed to estimate the GD function from the real spectral zeros. The SE is estimated based on the phase function computed from the estimated GD. Since the GD estimation is parametric, the degree of smoothness can be controlled directly. Simulation results based on synthetic transient signals generated using a beta density function are presented to analyze the noise-robustness of the SEGD model. Three specific applications are considered: (1) SEGD based modeling of Castanet sounds; (2) appropriateness of the model for transient compression; and (3) determining glottal closure instants in speech using a short-time SEGD model of the linear prediction residue.
Resumo:
In Orthogonal Frequency Division Multiplexing and Discrete Multitone transceivers, a guard interval called Cyclic Prefix (CP) is inserted to avoid inter-symbol interference. The length of the CP is usually greater than the impulse response of the channel resulting in a loss of useful data carriers. In order to avoid long CP, a time domain equalizer is used to shorten the channel. In this paper, we propose a method to include a delay in the zero-forcing equalizer and obtain an optimal value of the delay, based on the location of zeros of the channel. The performance of the algorithms is studied using numerical simulations.
Resumo:
There have been attempts at obtaining robust guidance laws to ensure zero miss distance (ZMD) for interceptors with parametric uncertainties. All these laws require the plant to be of minimum phase type to enable the overall guidance loop transfer function to satisfy strict positive realness (SPR). The SPR property implies absolute stability of the closed loop system, and has been shown in the literature to lead to ZMD because it avoids saturation of lateral acceleration. In these works higher order interceptors are reduced to lower order equivalent models for which control laws are designed to ensure ZMD. However, it has also been shown that when the original system with right half plane (RHP) zeros is considered, the resulting miss distances, using such strategies, can be quite high. In this paper, an alternative approach using the circle criterion establishes the conditions for absolute stability of the guidance loop and relaxes the conservative nature of some earlier results arising from assumption of in�nite engagement time. Further, a feedforward scheme in conjunction with a lead-lag compensator is used as one control strategy while a generalized sampled hold function is used as a second strategy, to shift the RHP transmission zeros, thereby achieving ZMD. It is observed that merely shifting the RHP zero(s) to the left half plane reduces miss distances signi�cantly even when no additional controllers are used to ensure SPR conditions.
Resumo:
We show that as n changes, the characteristic polynomial of the n x n random matrix with i.i.d. complex Gaussian entries can be described recursively through a process analogous to Polya's urn scheme. As a result, we get a random analytic function in the limit, which is given by a mixture of Gaussian analytic functions. This suggests another reason why the zeros of Gaussian analytic functions and the Ginibre ensemble exhibit similar local repulsion, but different global behavior. Our approach gives new explicit formulas for the limiting analytic function.
Resumo:
In the vector space of algebraic curvature operators we study the reaction ODE which is associated to the evolution equation of the Riemann curvature operator along the Ricci flow. More precisely, we give a partial classification of the zeros of this ODE up to suitable normalization and analyze the stability of a special class of zeros of the same. In particular, we show that the ODE is unstable near the curvature operators of the Riemannian product spaces where is an Einstein (locally) symmetric space of compact type and not a spherical space form when .
Resumo:
In Part I a class of linear boundary value problems is considered which is a simple model of boundary layer theory. The effect of zeros and singularities of the coefficients of the equations at the point where the boundary layer occurs is considered. The usual boundary layer techniques are still applicable in some cases and are used to derive uniform asymptotic expansions. In other cases it is shown that the inner and outer expansions do not overlap due to the presence of a turning point outside the boundary layer. The region near the turning point is described by a two-variable expansion. In these cases a related initial value problem is solved and then used to show formally that for the boundary value problem either a solution exists, except for a discrete set of eigenvalues, whose asymptotic behaviour is found, or the solution is non-unique. A proof is given of the validity of the two-variable expansion; in a special case this proof also demonstrates the validity of the inner and outer expansions.
Nonlinear dispersive wave equations which are governed by variational principles are considered in Part II. It is shown that the averaged Lagrangian variational principle is in fact exact. This result is used to construct perturbation schemes to enable higher order terms in the equations for the slowly varying quantities to be calculated. A simple scheme applicable to linear or near-linear equations is first derived. The specific form of the first order correction terms is derived for several examples. The stability of constant solutions to these equations is considered and it is shown that the correction terms lead to the instability cut-off found by Benjamin. A general stability criterion is given which explicitly demonstrates the conditions under which this cut-off occurs. The corrected set of equations are nonlinear dispersive equations and their stationary solutions are investigated. A more sophisticated scheme is developed for fully nonlinear equations by using an extension of the Hamiltonian formalism recently introduced by Whitham. Finally the averaged Lagrangian technique is extended to treat slowly varying multiply-periodic solutions. The adiabatic invariants for a separable mechanical system are derived by this method.
Resumo:
A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.
We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.
We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.
Resumo:
Recent theoretical developments in the reggeization of inelastic processes involving particles with high spin are incorporated into a model of vector meson production. A number of features of experimental differential cross sections and density matrices are interpreted in terms of this model.
The method chosen for reggeization of helicity amplitudes first separates kinematic zeros and singularities from the parity-conserving amplitudes and then applies results of Freedman and Wang on daughter trajectories to the remaining factors. Kinematic constraints on helicity amplitudes at t = 0 and t = (M – MΔ)2 are also considered.
It is found that data for reactions of types πN→VN and πN→VΔ are consistent with a model of this type in which all kinematic constraints at t = 0 are satisfied by evasion (vanishing of residue functions). As a quantitative test of the parametrization, experimental differential cross sections of vector meson production reactions dominated by pion trajectory exchange are compared with the theory. It is found that reduced residue functions are approximately constant, once the kinematic behavior near t = (M – MΔ)2 has been removed.
The alternative possibility of conspiracy between amplitudes is also discussed; and it is shown that unless conspiracy is present, some amplitudes allowed by angular momentum conservation will not contribute with full strength in the forward direction. An example, γp→π+n in which the data for dσ/dt indicate conspiracy, is studied in detail.
Resumo:
A cascaded Fresnel digital hologram (CFDH) is proposed, together with its mathematical derivation. Its application to watermarking has been demonstrated by a simulation procedure, in which the watermark image to be hidden is encoded into the phase of the host image. The watermark image can be deciphered by the CFDH setup, the reconstructed image shows good quality and the error is almost closed to zeros. Compared with previous technique, this is a lensless architecture, which minimizes the hardware requirement. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Design and preparation of frequency doubling antireflection coating with different thicknesses of interlayer were investigated for LiB3O5 (LBO) substrate. The design was based on the vector method. The thickness of the inserted SiO2 interlayer could be changed in a wide range for the four-layer design with two zeros at 1064 and 532 nm. The coatings without any interlayer and with 0.1 quarter-wave (λ/4), 0.3 λ/4, 0.5 λ/4 SiO2 interlayer were deposited respectively on LBO by using electron beam evaporation technique. All the prepared coatings with SiO2 interlayer indicated satisfying optical behavior. This expanded our option for the thickness of an interlayer when coating on LBO substrate. The prepared films with SiO2 interlayer showed better adhesion than that without any interlayer. The thickness of the interlayer affected the adhesion, the adhesion for the coating with 0.5 λ/4 SiO2 interlayer was not as good as the other two.}
Resumo:
Nesta Tese desenvolvemos várias abordagens "Darbouxianas"para buscar integrais primeiras (elementares e Liouvillianas) de equações diferenciais ordinárias de segunda ordem (2EDOs) racionais. Os algoritmos (semi-algoritmos) que desenvolvemos seguem a linha do trabalho de Prelle e Singer. Basicamente, os métodos que buscam integrais primeiras elementares são uma extensão da técnica desenvolvida por Prelle e Singer para encontrar soluções elementares de equações diferenciais ordinárias de primeira ordem (1EDOs) racionais. O procedimento que lida com 2EDOs racionais que apresentam integrais primeiras Liouvillianas é baseado em uma extensão ao nosso método para encontrar soluções Liouvillianas de 1EDOs racionais. A ideia fundamental por tras do nosso trabalho consiste em que os fatores integrantes para 1-formas polinomiais geradas pela diferenciação de funções elementares e Liouvillianas são formados por certos polinômios denominados polinômios de Darboux. Vamos mostrar como combinar esses polinômios de Darboux para construir fatores integrantes e, de posse deles, determinar integrais primeiras. Vamos ainda discutir algumas implementações computacionais dos semi-algoritmos.
Resumo:
A discriminação de fases que são praticamente indistinguíveis ao microscópio ótico de luz refletida ou ao microscópio eletrônico de varredura (MEV) é um dos problemas clássicos da microscopia de minérios. Com o objetivo de resolver este problema vem sendo recentemente empregada a técnica de microscopia colocalizada, que consiste na junção de duas modalidades de microscopia, microscopia ótica e microscopia eletrônica de varredura. O objetivo da técnica é fornecer uma imagem de microscopia multimodal, tornando possível a identificação, em amostras de minerais, de fases que não seriam distinguíveis com o uso de uma única modalidade, superando assim as limitações individuais dos dois sistemas. O método de registro até então disponível na literatura para a fusão das imagens de microscopia ótica e de microscopia eletrônica de varredura é um procedimento trabalhoso e extremamente dependente da interação do operador, uma vez que envolve a calibração do sistema com uma malha padrão a cada rotina de aquisição de imagens. Por esse motivo a técnica existente não é prática. Este trabalho propõe uma metodologia para automatizar o processo de registro de imagens de microscopia ótica e de microscopia eletrônica de varredura de maneira a aperfeiçoar e simplificar o uso da técnica de microscopia colocalizada. O método proposto pode ser subdividido em dois procedimentos: obtenção da transformação e registro das imagens com uso desta transformação. A obtenção da transformação envolve, primeiramente, o pré-processamento dos pares de forma a executar um registro grosseiro entre as imagens de cada par. Em seguida, são obtidos pontos homólogos, nas imagens óticas e de MEV. Para tal, foram utilizados dois métodos, o primeiro desenvolvido com base no algoritmo SIFT e o segundo definido a partir da varredura pelo máximo valor do coeficiente de correlação. Na etapa seguinte é calculada a transformação. Foram empregadas duas abordagens distintas: a média ponderada local (LWM) e os mínimos quadrados ponderados com polinômios ortogonais (MQPPO). O LWM recebe como entradas os chamados pseudo-homólogos, pontos que são forçadamente distribuídos de forma regular na imagem de referência, e que revelam, na imagem a ser registrada, os deslocamentos locais relativos entre as imagens. Tais pseudo-homólogos podem ser obtidos tanto pelo SIFT como pelo método do coeficiente de correlação. Por outro lado, o MQPPO recebe um conjunto de pontos com a distribuição natural. A análise dos registro de imagens obtidos empregou como métrica o valor da correlação entre as imagens obtidas. Observou-se que com o uso das variantes propostas SIFT-LWM e SIFT-Correlação foram obtidos resultados ligeiramente superiores aos do método com a malha padrão e LWM. Assim, a proposta, além de reduzir drasticamente a intervenção do operador, ainda possibilitou resultados mais precisos. Por outro lado, o método baseado na transformação fornecida pelos mínimos quadrados ponderados com polinômios ortogonais mostrou resultados inferiores aos produzidos pelo método que faz uso da malha padrão.
Resumo:
A presente dissertação tem como objetivo analisar o comportamento da solução numérica da equação de difusão anômala com distribuição de fluxo bimodal, no regime estacionário, através de dois métodos numéricos. Foram desenvolvidos modelos utilizando o Método de Elementos Finitos e o Método de Volumes Finitos para a solução numérica desta equação. No modelo do Método de Elementos Finitos utilizou-se polinômios cúbicos de Hermite como funções de interpolação. No modelo de Volumes Finitos foi utilizada uma discretização de ordem superior para a avaliação das derivadas da equação em estudo. Em ambos os métodos, os modelos desenvolvidos consideram a utilização de diferentes tipos de condições de contorno para a solução do problema. Foram analisadas as influências de parâmetros da equação, das condições de contorno e do refinamento da malha na solução numérica. Os resultados apresentam a análise de erros da solução numérica através da comparação desta com a solução analítica.
Resumo:
A technique enabling 10 Gbps data to be directly modulated onto a monolithic sub-THz dual laser transmitter is proposed. As a result of the laser chirp, the logical zeros of the resultant sub-THz signal have a different peak frequency from that of the logical ones. The signal extinction ratio is therefore enhanced by suppressing the logical zeros with a filter stage at the receiver. With the aid of the chirp-enhanced filtering, an improved extinction ratio can be achieved at moderate modulation current. Hence, 10 GHz modulation bandwidth of the transmitter is predicted without the need for external modulators. In this paper, we demonstrate the operational principle by generating an error-free (bit error rate less than 10-9) 100 Mbps Manchester encoded signal with a centre frequency of 12 GHz within the bandwidth of an envelope detector, whilst direct modulation of a 100 GHz signal at data rates of up to 10 Gbps is simulated by using a transmission line model. This work could be a key technique for enabling monolithic sub-THz transmitters to be readily used in high speed wireless links. © 2013 IEEE.