956 resultados para YTTRIA-STABILIZED ZIRCONIA
Resumo:
The above factors emphasize the scope of this thesis for further investigations on zirconia, the improvement of all-ceramic zirconia restorations, and especially the interaction of zirconia and veneering and its influence on the performance of the whole restoration. The introduction, chapter 1, gave a literature overview on zirconia ceramics. In chapter 2, the objective of the study was to evaluate the effect of abrading before and after sintering using alumina-based abrasives on the surface of yttria-tetragonal zirconia polycrystals. Particular attention was paid to the amount of surface stress–assisted phase transformation (tetragonal→monoclinic) and the presence of microcracks. Chapter 3 is based on the idea that the conventional sintering techniques for zirconia based materials, which are commonly used in dental reconstruction, may not provide a uniform heating, with consequent generation of microstructural flaws in the final component. As a consequence of the sintering system, using microwave heating, may represent a viable alternative. The purpose of the study was to compare the dimensional variations and physical and microstructural characteristics of commercial zirconia (Y-TZP), used as a dental restoration material, sintered in conventional and microwave furnaces. Chapter 4 described the effect of sandblasting before and after sintering on the surface roughness of zirconia and the microtensile bond strength of a pressable veneering ceramic to zirconia.
Resumo:
In the presence of nonionic block-copolymer surfactant, nanocrystalline zirconia particles with MSU mesostrucmre were synthesized by a novel solid-state reaction route. The zirconia particles possess a nanocrystalline pore wall, which renders higher thermal stability compared to an amorphous framework. To further enhance its stability, laponite, a synthetic clay, was introduced. Laponite acts as an inhibitor to crystal a growth and also as a hard template for the mesostructure. High surface area and ordered pore structure were observed in the stabilized zirconia. The results show that the formation of the MSU structure is attributed to reverse hexagonal micelles, which are the products of the cooperative self-assembly of organic and inorganic species in the solid-state synthesis system with crystalline water and hygroscopic water present.
Resumo:
At present, the material of choice for performing aesthetic dental prosthetic work is in the ceramic. Among them, the ceramic base of stabilized zirconia with 3% yttria (3Y - TZP) stand out for having excellent physical and mechanical properties. During the machining of blocks of zirconia in the laboratory to prepare the various types of prostheses, much of the material is given off in the form of powder, which is subsequently discarded. The waste of this material results in financial loss, reflecting higher final cost treatment for patients, as well as damage to the environment, thanks to the processes involved in the manufacture and disposal of the ceramic. This research, pioneered the recycling of zirconium oxide powder obtained during milling of dental crowns and bridges, we highlight the social and environmental aspects and aims to establish a protocol for the reuse of waste (powder of zirconia Zirkonzahn® system) discarded to obtain a new block of compacted zirconia to maintain the same mechanical and microstructural properties of commercial high-cost imported material. To compare with the commercial material, samples were uniaxially (20 MPa) and isostatically (100 MPa), and its mechanical and microstructural characterization was performed through tests of density, porosity, dilatometry, X-ray diffraction (XRD), hardness, fracture toughness, resistance to fracture electron microscopy (SEM) and analysis of grain size. The results observed in the samples were isostatically pressed similiares those obtained with samples from the commercial material demonstrating the viability of the process
Resumo:
The microstructure of artificial grain boundaries in YBa2Cu3O7-δ (YBCO) thin films grown on [001] tilt YZrO2 (YSZ) bicrystal substrates has been characterized using transmission electron microscopy and atomic force microscopy. Despite a relatively straight morphology of the substrate boundaries, the film boundaries were wavy. The waviness was a result of the combined effects of grooving at the substrate boundaries prior to the film deposition and an island-growth mechanism for YBCO on YSZ substrates. The dihedral angle of the groove walls varied with the misorientation angle and depended on the symmetry of the substrate boundary. The amplitudes of the film boundary waviness compared well with the widths of the grooves. In addition, the grooves induced local bending of the YBCO lattice planes and additional tilt components perpendicular to the c-axis close to the film boundaries. © 1995.
Resumo:
Phase relations in the system Ta-Rh-O were determined by analysis of quenched samples corresponding to thirteen compositions inside the ternary triangle after equilibration at 1273 K. All the Ta-Rh alloys were found to be in equilibrium with Ta2O5. Only one ternary oxide TaRhO4 was detected. Based on phase relations in the ternary system, a solid-state electrochemical cell, incorporating calcia-stabilized zirconia as the electrolyte, was designed to measure the standard Gibbs energy of formation (Delta G degrees, J mol(-1)) of TaRhO4 in the temperature range from 900 to 1300 K. For the reaction, 1/2 beta-Ta2O5 + 1/2 Rh2O3(ortho) -> TaRhO4 Delta G degrees = -42993 + 5.676T (+/- 85) The calculated decomposition temperatures of TaRhO4 are 1644 +/- 5K in pure O-2 and 1543 +/- 5K in air at a total pressure p(o) = 0.1 MPa. Thermodynamic properties of TaRhO4 at 298.15K have been evaluated from the results. The limited experimental thermodynamic data for Rh-rich alloys available in the literature are in fair accord with Miedema's model. The Gibbs energies of formation of the different phases in the binary system Ta-Rh were estimated based on these inputs, consistent with the binary phase diagram. Based on the thermodynamic information on the stability of various phases, an oxygen potential diagram for the system Ta-Rh-O at 1273K was constructed. Also presented are temperature-composition diagrams for the ternary system at constant oxygen partial pressures (po(2)/p(o) = 0.212 and 10(-6)) calculated form the basic data.
Resumo:
Standard Gibbs energies of formation of oxysulfides of cerium and yttrium from their respective oxedes were determined using solid oxide galvanic cells incorporating calcia-stabilized zirconia as the electrolyte in the temperature range 870–1120 K. The sulfur potential over the electrode containing the oxide and oxysulfide was fixed by a buffer mixture of Ag + Ag2S. A small amount of CaH2 was added to the buffer to generate an equilibrium ratio of H2S and H2 species in a closed system containing the buffer and the electrode. The sulfur potential is transmitted to the electrode via the gas phase. The results can be summarized by the equations 2left angle bracketCeO2right-pointing angle bracket+1/2(S2)→left angle bracketCe2O2Sright-pointing angle bracket+(O2) ΔG°=430600−109·7T(±400)J mol−1 left angle bracketY2O3right-pointing angle bracket+1/2(S2)→left angle bracketY2O2Sright-pointing angle bracket+1/2(O2) ΔG°=114780−1·45T(±200)J mol−1 The values are compared with data reported in the literature. The stability field diagram for the Ce---O---S system has been developed using the results of this study for Ce2O2S and data for other phases from the literature.
Resumo:
The activity of gallium in liquid Ga-Te alloys has been measured at 1120 K using a solid state galvanic cell incorporating yttria-stabilized thoria as the solid electrolyte. The cell can be schematically represented as (−) W,Re,Ga(1)+Ga2O3(s)|(Y2O3) ThO2|Ga-Te(1) + Ga2O3(s), Re, W (+) The activity of tellurium was derived by Gibbs-Duhem integration. The activity of gallium shows negative deviation from Raoult's law for XGa < 0.6 and positive deviation from ideality for XGa > 0.6. The activity of gallium was constant in the composition range 0.73 < XGa < 0.89, indicating liquid state immiscibility in this region. The Gibbs energy of mixing and the concentration-concentration structure factor at long wavelength limit show a minimum at XGa ≈ 0.4, suggesting strong interactions in the liquid phase with formation of ‘Ga2Te3‘-type complexes
Resumo:
An expression for the EMF of a nonisothermal galvanic cell, with gradients in both temperature and chemical potential across a solid electrolyte, is derived based on the phenomenological equations of irreversible thermodynamics. The EMF of the nonisothermal cell can be written as a sum of the contributions from the chemical potential gradient and the EMF of a thermocell operating in the same temperature gradient but at unit activity of the neutral form of the migrating species. The validity of the derived equation is confirmed experimentally by imposing nonlinear gradients of temperature and chemical potential across galvanic cells constructed using fully stabilized zirconia as the electrolyte. The nature of the gradient has no effect on the EMF.
Resumo:
Zirconia-based solid electrolytes with zircon (ZrSiO4) as the auxiliary electrode have been suggested of sensing silicon concentrations in iron and steel melts. A knowledge of phase relations in the ternary system MO-SiO2-ZrO2 (M = Ca, Mg) is useful for selecting an appropriate auxiliary electrode. In this investigation, an isothermal section for the phase diagram of the system CaO-SiO2ZrO2 at 1573 K has been established by equilibrating mixtures of component oxides in air, followed by quenching and phase identification by optical miroscopy, energy disperse analysis of X-rays (EDAX) and X-ray diffraction analysis (XRD). The equilibrium phase relations have also been confirmed by computation using the available thermodynamic data on condensed phases in the system. The results indicate that zircon is not in thermodynamic equilibrium with calcia-stabilized zirconia or calcium zirconate. The silica containing phase in equilibrium with stabilized zirconia is Ca3ZrSi2O9. Calcium zirconate can coexist with Ca3ZrSi2O9 and Ca2SiO4.
Resumo:
An isothermal section of the phase diagram for the system Eu - Pd - O at 1223 K has been established by equilibration of samples representing 20 different compositions, and phase identification after quenching by optical and scanning electron microscopy, X-ray powder diffraction, and energy dispersive spectroscopy. Three ternary oxides, Eu4PdO7, Eu2PdO4, and Eu2Pd2O5, were identified. Liquid alloys and the intermetallic compounds EuPd2 and EuPd3 were found to be in equilibrium with EuO. The compound EuPd3 was also found to coexist separately with Eu3O4 and Eu2O3. The oxide phase in equilibrium with EuPd5 and Pd rich solid solution was Eu2O3. Based on the phase relations, four solid state cells were designed to measure the Gibbs energies of formation of the three ternary oxides in the temperature range from 925 to 1350 K. Although three cells are sufficient to obtain the properties of the three compounds, the fourth cell was deployed to crosscheck the data. An advanced version of the solid state cell incorporating a buffer electrode with yttria stabilised zirconia solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode was used for high temperature thermodynamic measurements. Equations for the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides Eu2O3 with C type structure and PdO have been established. Based on the thermodynamic information, isothermal chemical potential diagrams and isobaric phase diagrams for the system Eu - Pd - O have been developed.
Resumo:
The open circuit potentials of the galvanic cell,Pt (or Au)¦(Ar + H2S + H2)primeparCaS + ZrO2(CaO)par (Ar + H2S+ H2)Prime£t (or Au) has been measured in the temperature range 1000 to 1660 K and PH2S:PH 2 ratios from 1.73×10–5 to 2.65×10–1. The solid electrolyte consists of a dispersion of calcium sulphide in a matrix of calcia-stabilized zirconia. The surface of the electrolyte is coated with a thin layer of calcium sulphide to prevent the formation of water vapour by reaction of hydrogen sulphide with calcium oxide or zirconia present in the electrolyte. The use of a lsquopoint electrodersquo with a catalytically active tip was necessary to obtain steady emfs. At low temperatures and high sulphur potentials the emfs agreed with the Nernst equation. Deviations were observed at high temperatures and low sulphur potentials, probably due to the onset of significant electronic conduction in the oxide matrix of the electrolyte. The values of oxygen and sulphur potentials at which the electronic conductivity is equal to ionic conductivity in the two-phase electrolyte have been evaluated from the emf response of the cell. The sulphide-oxide electrolyte is unsuitable for sulphur potential measurements in atmospheres with high oxygen potentials, where oxidation of calcium sulphide may be expected.
Resumo:
The tie-lines delineating equilibria between CoO-NiO and Co-Ni solid solutions in the ternary Co-Ni-O system at 1373 K have been determined by electron microprobe andedax point count analysis of the oxide phase equilibrated with the alloy. The oxygen potentials corresponding to the tie-line compositions have been measured using a solid oxide galvanic cell with calcia-stabilized zirconia electrolyte and Ni + NiO reference electrode. Activities in the metallic and oxide solid solution have been derived using a new Gibbs-Duhem integration technique. Both phases exhibit small positive deviations from ideality; the values ofG E/X 1 X 2 are 2640 J mol−1 for the metallic phase and 2870 J mol−1 for the oxide solid solution.
Resumo:
The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations: log(at. pct O) = \frac - 10,005T + 4.944 ( ±0.015)log(atpctO)=T−10005+4944(0015) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn DmO2 /4.606RT = log P O2 1/2 = \frac - 13,550T + 4.411 ( ±0.009)O24606RT=logPO212=T−13550+4411(0009) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction, $\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$Missing close brace ΔG o = -72,930 - 7.11T (±840) J gr.at.–1 = + 0.216 at. pct OlogfO=T−500+0216atpctO where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.
Resumo:
Phase relations in the pseudoternary system NiO-CaO-SiO2 at 1373 K are established. The coexisting phases are identified by X-ray diffraction and energy-dispersive X-ray analysis of equilibrated samples. There is only one quaternary oxide CaNiSi2O6 with clinopyroxene structure. The Gibbs energy of formation of CaNiSi2O6 is measured using a solid state galvanic cell incorporating stabilized zirconia as the solid electrolyte in the temperature range of 1000 to 1400 K:Pt, Ni + SiO2 + CaSiO3 + CaNiSi2O6 \ (Y2O3)ZrO2 \ Ni + NiO, Pt From the electromotive force (emf) of the cell, the Gibbs energy of formation of CaNiSi2O6 from NiO, SiO2, and CaSiO3 is obtained. To derive the Gibbs energy of formation of the quaternary oxide from component binary oxides, the free energy of formation of CaSiO, is determined separately using a solid state cell based on single crystal CaF2 as the electrolyte: Pt, O-2, CaO + CaF2 \ CaF2 \ CaSiO3 + SiO2 + CaF2, O-2, Pt The results can be expressed by the following equations: NiO (r.s) + CaO (r.s) + 2SiO(2) (qz) --> CaNiSi2O6 (pyr) Delta G degrees = -115,700 + 10.63T (+/-100) J mol(-1) CaO (r.s) + SiO2 (qz) --> CaSiO3 (wol) Delta G degrees = -90,030 -0.61T (+/-60) J mol(-1).
Resumo:
The standard Gibbs energy of formation of ReO2 in the temperature range from 900 to 1200 K has been determined with high precision using a novel apparatus incorporating a buffer electrode between reference and working electrodes. The role of the buffer electrode was to absorb the electrochemical flux of oxygen through the solid electrolyte from the electrode with higher oxygen chemical potential to the electrode with lower oxygen potential. It prevented the polarization of the measuring electrode and ensured accurate data. The Re+ReO2 working electrode was placed in a closed stabilized-zirconia crucible to prevent continuous vaporization of Re2O7 at high temperatures. The standard Gibbs energy of the formation of ReO2 can be represented by the equation View the MathML source Accurate values of low and high temperature heat capacity of ReO2 are available in the literature. The thermal data are coupled with the standard Gibbs energy of formation, obtained in this study, to evaluate the standard enthalpy of formation of ReO2 at 298.15 K by the ‘third law’ method. The value of standard enthalpy of formation at 298.15 K is: View the MathML source(ReO2)/kJ mol−1=−445.1 (±0.2). The uncertainty estimate includes both random (2σ) and systematic errors.