952 resultados para X-POINT GEOMETRY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O fósforo (P) é um nutriente essencial para o crescimento das plantas. Milhões de toneladas de P são aplicados aos solos anualmente. No entanto, apenas uma pequena fração do P aplicado com fertilizantes é aproveitada nas lavouras no ano de aplicação, bem como a eficácia do fertilizante fosfatado diminui com o tempo. Para melhorar a nossa compreensão dos mecanismos, a esta resposta do P no campo, este trabalho visa estudar a migração desse elemento em solos tropicais brasileiros (Latossolo vermelho e Latossolo amarelo) tratados com três tipos de fertilizantes: fosfato monoamônico (MAP), o polímero revestido de fosfato monoamônio (MAPP) e fosfato organomineral (OMP) em um experimento de placa de Petri. Fluorescência de Raios X por Reflexão Total (TXRF) foi usada para determinar o fluxo difusivo P a distâncias radiais diferentes (entre 0 e 7,5 mm, entre 7,5 e 13,5 mm, 13,5 e 25,5 mm e entre 25,5 e 43 mm) a partir do grânulo de fertilizante. As análises usando TXRF foram realizadas no Laboratório Nacional de Luz Síncrotron (LNLS), em Campinas, São Paulo, na linha de Fluorescência de Raios X (Beamline D09B). Depois de um período de cinco semanas, a concentração total de P, Ca e Al foram obtidas e comparadas analisando o tipo de solo/textura, o pH e o respectivo extrator de P, que nesse estudo foram usados o Mehlich 1 e água régia. De forma geral, concluiu-se que 80,0 % de fósforo proveniente dos fertilizantes usados nessa proposta ficaram concentrados em distâncias menores que 10 mm do ponto de aplicação dos fertilizantes, independentemente do tipo de solo, do pH e da respectiva textura. Em relação à utilização da técnica TXRF, o sistema foi eficiente, dentre outras características, na discriminação dos picos de fósforo dos picos de enxofre, principalmente nas amostras de solo usadas a partir da extração com Mehlich 1. Destaca-se isso, pois os raios X característicos desses elementos são muitos próximos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specific blood coagulation factor X activator was purified from the venom of Ophiophagus hannah by gel filtration and two steps of FPLC Mono-Q column ion-exchange chromatography. It showed a single protein band both in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline polyacrylamide gel electrophoresis. The mol. wt was estimated to be 62,000 in non-reducing conditions and 64,500 in reducing conditions by SDS-PAGE. The isoelectric point was found to be pH 5.6. The enzyme had weak amidolytic activities toward CBS 65-25, but it showed no activities on S-2266, S-2302, thrombin substrate S-2238, plasmin substrate S-2251 or factor Xa substrate S-2222. It had no arginine esterase activity toward substrate benzoylarginine ethylester (BAEE). The enzyme activated factor X in vitro and the effect was absolutely Ca2+ dependent, with a Hill coefficient of 6.83. It could not activate prothrombin nor had any effect on fibrinogen and thus appeared to act specifically on factor X. The procoagulant activity of the enzyme was almost completely inhibited by serine protease inhibitors like PMSF, TPCK and soybean trypsin inhibitor; partially inhibited by L-cysteine. Metal chelator EDTA did not inhibit its procoagulant activity. These results suggest that the factor X activator from O. hannah venom is a serine protease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation into predicting failure of pneumatic conveyor pipe bends due to hard solid particle impact erosion has been carried out on an industrial scale test rig. The bend puncture point locations may vary with many factors. However, bend orientation was suspected of being a main factor due to the biased particle distribution pattern of a high concentration flow. In this paper, puncture point locations have been studied with different pipe bend orientations and geometry (a solids loading ratio of 10 being used for the high concentration flow). Test results confirmed that the puncture point location is indeed most significantly influenced by the bend orientation (especially for a high concentration flow) due to the biased particle distribution and biased particle flux distribution. © 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient flows in a confined ventilated space induced by a buoyancy source of time-varying strength and an external wind are examined. The space considered has varying cross-sectional area with height. A generalised theoretical model is proposed to investigate the flow dynamics following the activation of an external wind and an internal source of buoyancy. To investigate the effect of geometry, we vary the angle of the wall inclination of a particular geometry in which a point source of constant buoyancy is activated in the absence of wind. Counter-intuitively the ventilation is worse and lower airflow rates are established for geometries of increasing cross-sectional areas with height. We investigate the effect of the source buoyancy strength by comparing two cases: (1) when the buoyancy input is constant and (2) when the buoyancy input gradually increases over time so that after a finite time the total buoyancy inputs for (1) and (2) are identical. The rate at which the source heat gains are introduced has a significant role on the flow behaviour as we find that, in case (2), a warmer layer and a more pronounced overshoot are obtained than in case (1). The effect of assisting and opposing wind on the transient ventilation of an enclosure of constant cross-sectional area with height and constant heat gains is examined. A Froude number Fr is used to define the relative strengths of the buoyancy-induced and wind-induced velocities and five different transient states and their associated critical Fr are identified. © 2010 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 ± 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 ± 0:79 mm. © 2013 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidisciplinary Design Optimization (MDO) is a methodology for optimizing large coupled systems. Over the years, a number of different MDO decomposition strategies, known as architectures, have been developed, and various pieces of analytical work have been done on MDO and its architectures. However, MDO lacks an overarching paradigm which would unify the field and promote cumulative research. In this paper, we propose a differential geometry framework as such a paradigm: Differential geometry comes with its own set of analysis tools and a long history of use in theoretical physics. We begin by outlining some of the mathematics behind differential geometry and then translate MDO into that framework. This initial work gives new tools and techniques for studying MDO and its architectures while producing a naturally arising measure of design coupling. The framework also suggests several new areas for exploration into and analysis of MDO systems. At this point, analogies with particle dynamics and systems of differential equations look particularly promising for both the wealth of extant background theory that they have and the potential predictive and evaluative power that they hold. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The full-width at half-maximum (FWHM) of an x-ray rocking curve (XRC) has been used as a parameter to determine the tilt and twist angles of GaN layers. Nevertheless, when the thickness of GaN epilayer reaches several microns, the peak broadening due to curvature becomes non-negligible. In this paper, using the (0 0 l), l = 2, 4, 6, XRC to minimize the effects of wafer curvature was studied systematically. Also the method to determine the tilt angle of a curved GaN layer was proposed while the Williamson-Hall plot was unsuitable. It was found that the (0 0 6) XRC-FWHM had a significant advantage for high-quality GaN layers with the radius curvature of r less than 3.5 m. Furthermore, an extrapolating method of gaining a reliable tilt angle has also been proposed, with which the calculated error can be improved by 10% for r < 2 m crystals compared with the (0 0 6) XRC-FWHM. In skew geometry, we have demonstrated that the twist angles deriving from the (2 0 4) XRC-FWHM are in accord with those from the grazing incidence in-plane diffraction (IP-GID) method for significantly curved samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The YCo5.0-xMnxGa7.0 compounds crystallize with the ScFe6Ga6-type structure. The lattice of YCo5.0-xMnxGa7.0 expands with the increase of the Mn content for 0.05 <= x <= 2.5, but the lattice of YCo2.0Mn3.0Ga7.0 shrinks compared with YCo2.5Mn2.5Ga7.0. The shrinkage of the lattice is attributed to the magnetostriction of YCo2.0Mn3.0Ga7.0. The substitution of Mn for Co forms magnetic clusters in the antiferromagnetic matrix. The magnetic frustration results in the spin-glass-like behavior for 0.8 <= x <= 1.5 and the difference between zero-field-cooling (ZFC) and field-cooling (FC) magnetizations for x = 2.0, 2.5, and 3.0. A stable long-range magnetic ordering appears among the Mn-centered magnetic clusters with the ordering temperature 110 K for x = 2.0. The hump in the thermomagnetization of YCo3.0Mn2.0Ga7.0 can be attributed to the competitive effects between the thermal fluctuation and the enhanced magnetic interaction. Both the hump and the bifurcation between the ZFC and the FC magnetizations of YCo3.0Mn2.0Ga7.0 occur at lower temperatures as the applied field increases. On the two-step magnetization curve of YCo3.0Mn2.0Ga7.0, the inflection point at 4000 Oe is due to the coercive field, and the magnetic moments in the clusters are tilted to the applied field above 4000 Oe. The magnetic ordering temperature is further increased to 210 K for x = 2.5 and to 282 K for x = 3.0. The spontaneous magnetization of YCo2.0Mn3.0Ga7.0 is 0.575 mu B/f.u. at 5 K with a canted magnetic structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an n-type Si1-xGex/Ge (x >= 0.85) quantum cascade (QC) structure utilizing a deep Ge quantum well for electrons at the Gamma point is proposed. Based on linear interpolation, a conduction band offset at the Gamma point in a Si1-xGex/Ge ( x >= 0.85) heterostructure is presented, which is suitable for designing a QC laser. This approach has the advantages of a large conduction band offset at the Gamma point, a low lattice mismatch between the Si1-xGex/Ge ( x >= 0.85) active layers and the Si1-yGey ( y > x) virtual substrate, a small electron effective mass in the Gamma band, simple conduction energy band structures and a simple phonon scattering mechanism in the Ge quantum well. The theory predicts that if high-energy electrons are continuously injected into the Gamma band, a quasi-equilibrium distribution of electrons between the Gamma and L bands can be reached and held, i.e., electrons with a certain density will be kept in the Gamma band. This result is supported by the intervalley scattering experiments. In n-type Si1-xGex/Ge ( x >= 0.85) QC structures, population inversion between the laser's upper and lower levels is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In practical situations, the causes of image blurring are often undiscovered or difficult to get known. However, traditional methods usually assume the knowledge of the blur has been known prior to the restoring process, which are not practicable for blind image restoration. A new method proposed in this paper aims exactly at blind image restoration. The restoration process is transformed into a problem of point distribution analysis in high-dimensional space. Experiments have proved that the restoration could be achieved using this method without re-knowledge of the image blur. In addition, the algorithm guarantees to be convergent and has simple computation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

地址: Chinese Acad Sci, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of information digitalization and the correspondence of digits and the coordinates, Information Science and high-dimensional space have consanguineous relations. With the transforming from the information issues to the point analysis in high-dimensional space, we proposed a novel computational theory, named High dimensional imagery geometry (HDIG). Some computational algorithms of HDIG have been realized using software, and how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is demonstrated in this paper. As the applications, two kinds of experiments of HDIG, which are blurred image restoration and pattern recognition ones, are given, and the results are satisfying.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the light of descriptive geometry and notions in set theory, this paper re-defines the basic elements in space such as curve and surface and so on, presents some fundamental notions with respect to the point cover based on the High-dimension space (HDS) point covering theory, finally takes points from mapping part of speech signals to HDS, so as to analyze distribution information of these speech points in HDS, and various geometric covering objects for speech points and their relationship. Besides, this paper also proposes a new algorithm for speaker independent continuous digit speech recognition based on the HDS point dynamic searching theory without end-points detection and segmentation. First from the different digit syllables in real continuous digit speech, we establish the covering area in feature space for continuous speech. During recognition, we make use of the point covering dynamic searching theory in HDS to do recognition, and then get the satisfying recognized results. At last, compared to HMM (Hidden Markov models)-based method, from the development trend of the comparing results, as sample amount increasing, the difference of recognition rate between two methods will decrease slowly, while sample amount approaching to be very large, two recognition rates all close to 100% little by little. As seen from the results, the recognition rate of HDS point covering method is higher than that of in HMM (Hidden Markov models) based method, because, the point covering describes the morphological distribution for speech in HDS, whereas HMM-based method is only a probability distribution, whose accuracy is certainly inferior to point covering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we focus on the dipole mode of the two-dimensional (2D) photonic crystal (PC) single point defect cavity (SPDC) lasers and we report the fabrication and characterization of 2D PC SPDC lasers with the structure of adjusted innermost air holes. The photonic band and cavity Q factors are simulated by means of plane wave expansion (PWE) and finite-difference time-domain (FDTD), respectively. In order to improve the optical confinement of the SPDC, the diameter of the innermost holes was adjusted. Different lasing performances are observed experimentally. The experimental results agree with the theoretical prediction very well. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel image restoration approach based on high-dimensional space geometry is proposed, which is quite different from the existing traditional image restoration techniques. It is based on the homeomorphisms and "Principle of Homology Continuity" (PHC), an image is mapped to a point in high-dimensional space. Begin with the original blurred image, we get two further blurred images, then the restored image can be obtained through the regressive curve derived from the three points which are mapped form the images. Experiments have proved the availability of this "blurred-blurred-restored" algorithm, and the comparison with the classical Wiener Filter approach is presented in final.