862 resultados para Work capacity evaluation
Resumo:
Introduction. Respiratory difficulties in athletes are common, especially in adolescents, even in the absence of exercise-induced bronchoconstriction. Immaturity of the respiratory muscles coupling at high respiratory rates could be a potential mechanism. Whether respiratory muscle training (RMT) can positively influence it is yet unknown. Goal. We investigate the effects of RMT on ventilation and performance parameters in adolescent athletes and hypothesize that RMT will enhance respiratory capacity. Methods. 12 healthy subjects (8 male, 4 female, 17±0.5 years) from a sports/study high school class, competitively involved in various sports (minimum of 10 hours per week) underwent respiratory function testing, maximal minute ventilation (MMV) measurements and a maximal treadmill incremental test with VO2max and ventilatory thresholds (VT1 and VT2) determination. They then underwent one month of RMT (4 times/week) using a eucapnic hyperventilation device, with an incremental training program. The same tests were repeated after RMT. Results. Subjects completed 14.8 sessions of RMT, with an increase in total ventilation per session of 211±29% during training. Borg scale evaluation of the RMT session was unchanged or reduced in all subjects, despite an increase in total respiratory work. No changes (p>0.05) were observed pre/post RMT in VO2max (53.4±7.5 vs 51.6±7.7 ml/kg/min), VT2 (14.4±1.4 vs 14.0±1.1 km/h) or Speed max at end of test (16.1±1.7 vs 15.8±1.7 km/h). MVV increased by 9.2% (176.7±36.9 vs 192.9±32.6 l/min, p<0.001) and FVC by 3.3% (6.70±0.75 vs 4.85±0.76 litres, p<0.05). Subjective evaluation of respiratory sensations during exercise and daily living were also improved. Conclusions. RMT improves MMV and FVC in adolescent athletes, along with important subjective respiratory benefits, although no changes are seen in treadmill maximal performance tests and VO2max measurements. RMT can be easily performed in adolescent without side effects, with a potential for improvement in training capacity and overall well-being.
Resumo:
Automotive painting cabins are cleaned with several solvents, being great part of them mixtures of volatile organic compounds (VOCs), where the three xylene isomers are the most important constituents. To evaluate the work-related exposition of the cleaners that use these mixtures of solvents, xylenes have been determined in the working ambient air as well as its metabolite, o-m-p-methyl hippuric acid, has been analysed in urine to establish the dermal and respiratory exposition. This evaluation has been done in order to assess the occupational exposure to VOCs and to know the working conditions of the cleaners, but also to evaluate the effectiveness of personal protective equipment (PPE), the engineering control and the work practices.The xylenes have been chosen as indicators of exposition because they are the main components in the cleaning solvents used, with a level of concentration between 50% and 85%.The Xylenes have an occupational exposure limit (8 h TWA) of 50 ppm (221 mg/m3) and a short-term exposure limit (STEL) of 100 ppm (442 mg/m3). On the other hand, the biological exposure index (BEI) for xylenes is the sum of the total methyl hippuric acids in urine at the end of the work-shift, being the value 1500 mg/g creatinine.
Resumo:
An important policy issue in recent years concerns the number of people claimingdisability benefits for reasons of incapacity for work. We distinguish between workdisability , which may have its roots in economic and social circumstances, and healthdisability which arises from clear diagnosed medical conditions. Although there is a linkbetween work and health disability, economic conditions, and in particular the businesscycle and variations in the risk of unemployment over time and across localities, mayplay an important part in explaining both the stock of disability benefit claimants andinflows to and outflow from that stock. We employ a variety of cross?country andcountry?specific household panel data sets, as well as administrative data, to testwhether disability benefit claims rise when unemployment is higher, and also toinvestigate the impact of unemployment rates on flows on and off the benefit rolls. Wefind strong evidence that local variations in unemployment have an importantexplanatory role for disability benefit receipt, with higher total enrolments, loweroutflows from rolls and, often, higher inflows into disability rolls in regions and periodsof above?average unemployment. Although general subjective measures of selfreporteddisability and longstanding illness are also positively associated withunemployment rates, inclusion of self?reported health measures does not eliminate thestatistical relationship between unemployment rates and disability benefit receipt;indeed including general measures of health often strengthens that underlyingrelationship. Intriguingly, we also find some evidence from the United Kingdom and theUnited States that the prevalence of self?reported objective specific indicators ofdisability are often pro?cyclical that is, the incidence of specific forms of disability arepro?cyclical whereas claims for disability benefits given specific health conditions arecounter?cyclical. Overall, the analysis suggests that, for a range of countries and datasets, levels of claims for disability benefits are not simply related to changes in theincidence of health disability in the population and are strongly influenced by prevailingeconomic conditions. We discuss the policy implications of these various findings.
Resumo:
Variable advisory speed limit (VASL) systems could be effective at both urban and rural work zones, at both uncongested and congested sites. At uncongested urban work zones, the average speeds with VASL were lower than without VASL. But the standard deviation of speeds with VASL was higher. The increase in standard deviation may be due to the advisory nature of VASL. The speed limit compliance with VASL was about eight times greater than without VASL. At the congested sites, the VASL were effective in making drivers slow down gradually as they approached the work zone, reducing any sudden changes in speeds. Mobility-wise the use of VASL resulted in a decrease in average queue length, throughput, number of stops, and an increase in travel time. Several surrogate safety measures also demonstrated the benefits of VASL in congested work zones. VASL deployments in rural work zones resulted in reductions in mean speed, speed variance, and 85th percentile speeds downstream of the VASL sign. The study makes the following recommendations based on the case studies investigated: 1. The use of VASL is recommended for uncongested work zones to achieve better speed compliance and lower speeds. Greater enforcement of regulatory speed limits could help to decrease the standard deviation in speeds; 2. The use of VASL to complement the static speed limits in rural work zones is beneficial even if the VASL is only used to display the static speed limits. It leads to safer traffic conditions by encouraging traffic to slow down gradually and by reminding traffic of the reduced speed limit. A well-designed VASL algorithm, like the P5 algorithm developed in this study, can significantly improve the mobility and safety conditions in congested work zones. The use of simulation is recommended for optimizing the VASL algorithms before field deployment.
Resumo:
The focus of this report is a capacity analysis of two long-term urban freeway Work Zones. Work Zone #1 tapered four mainline lanes to two, using two separate tapers; Work Zone #2 tapered two mainline lanes to one. Work Zone throughput was analyzed throughout the day over multiple days and traffic operations conditions were analyzed up to a distance of five miles upstream of the Work Zone entrance. Historical data from pavement-embedded detectors were used to analyze traffic conditions. The database consisted of five-minute volume, speed and occupancy data collected from 78 detectors for a total of 50 days. Congestion during each analyzed Work Zone existed for more than fourteen hours each day; Work Zone impacts adversely affected freeway operations over distances of 3.7 to 4.2 miles. Speed and occupancy conditions further upstream were, however, not affected, or even improved due to significant trip diversion. Work Zone capacity was defined based on the maximum traffic flows observed over a one-hour period; throughput values were also compiled over longer periods of time when traffic was within 90% of the maximum observed one-hour flows, as well as over the multi-hour mid-day period. The Highway Capacity Manual freeway capacity definition based on the maximum observed 15-min period was not used, since it would have no practical application in estimating Work Zone throughput when congested conditions prevail for the majority of the hours of the day. Certain noteworthy changes took place for the duration of the analyzed Work Zones: per-lane throughput dropped; morning peak periods started earlier, evening peak periods ended later and lasted longer; mid-day volumes dropped accompanied by the highest occupancies of the day. Trip diversion was evident in lower volumes entering the analyzed freeway corridor, higher volumes using off-ramps and lower volumes using onramps upstream of the Work Zones. The majority of diverted traffic comprised smaller vehicles (vehicles up to 21 feet in length); combination truck volumes increased and their use of the median lane increased, contrary to smaller vehicles that shifted toward a heavier use of the shoulder lane.
Resumo:
This report presents the results of work zone field data analyzed on interstate highways in Missouri to determine the mean breakdown and queue-discharge flow rates as measures of capacity. Several days of traffic data collected at a work zone near Pacific, Missouri with a speed limit of 50 mph were analyzed in both the eastbound and westbound directions. As a result, a total of eleven breakdown events were identified using average speed profiles. The traffic flows prior to and after the onset of congestion were studied. Breakdown flow rates ranged between 1194 to 1404 vphpl, with an average of 1295 vphpl, and a mean queue discharge rate of 1072 vphpl was determined. Mean queue discharge, as used by the Highway Capacity Manual 2000 (HCM), in terms of pcphpl was found to be 1199, well below the HCM’s average capacity of 1600 pcphpl. This reduced capacity found at the site is attributable mainly to narrower lane width and higher percentage of heavy vehicles, around 25%, in the traffic stream. The difference found between mean breakdown flow (1295 vphpl) and queue-discharge flow (1072 vphpl) has been observed widely, and is due to reduced traffic flow once traffic breaks down and queues start to form. The Missouri DOT currently uses a spreadsheet for work zone planning applications that assumes the same values of breakdown and mean queue discharge flow rates. This study proposes that breakdown flow rates should be used to forecast the onset of congestion, whereas mean queue discharge flow rates should be used to estimate delays under congested conditions. Hence, it is recommended that the spreadsheet be refined accordingly.
Resumo:
Capacity is affected by construction type and its intensity on adjacent open traffic lanes. The effect on capacity is a function of vehicles moving in and out of the closed lanes of the work zone, and the presence of heavy construction vehicles. Construction activity and its intensity, however, are not commonly considered in estimating capacity of a highway lane. The main purpose of this project was to attempt to quantify the effects of construction type and intensity (e.g. maintenance, rehabilitation, reconstruction, and milling) on work zone capacity. The objective of this project is to quantify the effects of construction type and its intensity on work zone capacity and to develop guidelines for MoDOT to estimate the specific operation type and intensity that will improve the traffic flow by reducing the traffic flow and queue length commonly associated with work zones. Despite the effort put into field data collection, the data collected did not show a full speed-flow chart therefore extracting a reliable capacity value was difficult. A statistical comparison between the capacity values found in this study using either methodologies indicates that there is an effect of construction activity on the values work zone capacity. It was found that the heavy construction activity reduces the capacity. It is very beneficial to conduct similar studies on the capacity of work zone with different lane closure barriers, which is also directly related to the type of work zone being short-term or long-term work zones. Also, the effect of different geometric and environmental characteristics of the roadway should be considered in future studies.
Resumo:
Although extensive research has been conducted on urban freeway capacity estimation methods, minimal research has been carried out for rural highway sections, especially sections within work zones. This study attempted to fill that void for rural highways in Kansas, by estimating capacity of rural highway work zones in Kansas. Six work zone locations were selected for data collection and further analysis. An average of six days’ worth of field data was collected, from mid-October 2013 to late November 2013, at each of these work zone sites. Two capacity estimation methods were utilized, including the Maximum Observed 15-minute Flow Rate Method and the Platooning Method divided into 15-minute intervals. The Maximum Observed 15-minute Flow Rate Method provided an average capacity of 1469 passenger cars per hour per lane (pcphpl) with a standard deviation of 141 pcphpl, while the Platooning Method provided a maximum average capacity of 1195 pcphpl and a standard deviation of 28 pcphpl. Based on observed data and analysis carried out in this study, the suggested maximum capacity can be considered as 1500 pcphpl when designing work zones for rural highways in Kansas. This proposed standard value of rural highway work zone capacity could be utilized by engineers and planners so that they can effectively mitigate congestion at or near work zones that would have otherwise occurred due to construction/maintenance.
Resumo:
The Iowa Department of Transportation (DOT) has made improving work zone (WZ) safety a high priority. Managing vehicle speeds through work zones is perceived to be an important factor in achieving this goal. A number of speed reduction techniques are currently used by transportation agencies throughout the country to control speeds and reduce speed variation at work zones. The purpose of this project is to study these and other applicable work zone speed reduction strategies. Furthermore, this research explores transportation agencies' policies regarding managing speeds in long-term, short-term, and moving work zones. This report consists of three chapters. The first chapter, a literature review, examines the current speed reduction practices at work zones and provides a review of the relevant literature. The speed control strategies reviewed in this chapter range from posting regulatory and advisory speed limit signs to using the latest radar technologies to reduce speeds at work zones. The second chapter includes a short write-up for each identified speed control technique. The write-up includes a description, the results of any field tests, the benefits and the costs of the technology or technique. To learn more about other state policies regarding work zone speed reduction and management, the Center for Transportation Research and Education conducted a survey. The survey consists of six multipart questions. The third chapter provides summaries of the response to each question.
Resumo:
Wiss, Janney, Elstner Associates, Inc. (WJE) evaluated potential nondestructive evaluation (NDE) methodologies that may be effective in 1) identifying internal defects within slip formed concrete barriers and 2) assessing the corrosion condition of barrier dowel bars. The evaluation was requested by the Bridge Maintenance and Inspection Unit of the Iowa Department of Transportation (IaDOT) and the Bureau of Bridges and Structures of the Illinois Department of Transportation (IDOT). The need arose due to instances in each Department’s existing inventory of bridge barriers where internal voids and other defects associated with slip forming construction methods were attributed to poor barrier performance after completion of construction and where, in other barrier walls, unintentional exposure of the dowel bars revealed extensive corrosion-related section loss at previously uninspectable locations, reducing the capacity of the barriers to resist traffic impact loads. WJE trial tested potential NDE techniques on laboratory mock-up samples built with known defects, trial sections of cast-in-place barriers at in-service bridges in Iowa, and slip formed and cast-in-place barrier walls at in-service bridges in Illinois. The work included review of available studies performed by others, field trial testing to assess candidate test methods, verification of the test methods in identifying internal anomalies and dowel bar corrosion, and preparation of this report and nondestructive evaluation guidelines.
Resumo:
This paper investigates the asymptotic uniform power allocation capacity of frequency nonselective multiple-inputmultiple-output channels with fading correlation at either thetransmitter or the receiver. We consider the asymptotic situation,where the number of inputs and outputs increase without boundat the same rate. A simple uniparametric model for the fadingcorrelation function is proposed and the asymptotic capacity perantenna is derived in closed form. Although the proposed correlationmodel is introduced only for mathematical convenience, itis shown that its shape is very close to an exponentially decayingcorrelation function. The asymptotic expression obtained providesa simple and yet useful way of relating the actual fadingcorrelation to the asymptotic capacity per antenna from a purelyanalytical point of view. For example, the asymptotic expressionsindicate that fading correlation is more harmful when arising atthe side with less antennas. Moreover, fading correlation does notinfluence the rate of growth of the asymptotic capacity per receiveantenna with high Eb /N0.
Resumo:
The objective of this master's thesis is to evaluate the optimum performance of sixsectored hexagonal layout of WCDMA (UMTS) network and analyze the performance at the optimum point. The maximum coverage and the maximum capacity are the main concern of service providers and it is always a challenging task for them to achieve economically. Because the optimum configuration of a network corresponds to a configuration which minimizes the number of sites required to provide a target service probability in the planning area which in turn reduces the deployment cost. The optimum performance means the maximum cell area and themaximum cell capacity the network can provide at the maximum antenna height satisfying the target service probability. Hexagon layout has been proven as the best layout for the cell deployment. In this thesis work, two different configurations using six-sectored sites have been considered for the performance comparison. In first configuration, each antenna is directed towards each corner of hexagon, whereas in second configurationeach antenna is directed towards each side of hexagon. The net difference in the configurations is the 30 degree rotation of antenna direction. The only indoor users in a flat and smooth semi-urban environment area have been considered for the simulation purpose where the traffic distribution is 100 Erl/km2 with 12.2 kbps speech service having maximum mobile speed of 3 km/hr. The simulation results indicate that a similar performance can be achieved in both the configurations, that is, a maximum of 947 m cellrange at antenna height of 49.5 m can be achieved when the antennas are directed towards the corner of hexagon, whereas 943.3 m cell range atantenna height of 54 m can be achieved when the antennas are directed towards the side of hexagon. However, from the interference point of view the first configuration provides better results. The simulation results also show that the network is coverage limited in both the uplink and downlink direction at the optimum point.
Principal components analysis for quality evaluation of cooled banana 'Nanicão' in different packing
Resumo:
This work aims determinate the evaluation of the quality of 'Nanicão' banana, submitted to two conditions of storage temperature and three different kinds of package, using the technique of the Analysis of Principal Components (ACP), as a basis for an Analysis of Variance. The fruits used were 'Nanicão' bananas, at ripening degree 3, that is, more green than yellow. The packages tested were: "Torito" wood boxes, load capacity: 18 kg; "½ box" wood boxes, load capacity: 13 kg; and cardboard boxes, load capacity: 18 kg. The temperatures assessed were: room temperature (control); and (13±1ºC), with humidity controlled to 90±2,5%. Fruits were discarded when a sensory analysis determined they had become unfit for consumption. Peel coloration, percentages of imperfection, fresh mass, total acidity, pH, total soluble solids and percentages of sucrose were assessed. A completely randomized design with a 2-factorial treatment structure (packing X temperature) was used. The obtained data were analyzed through a multivariate analysis known as Principal Components Analysis, using S-plus 4.2. The conclusion was that the best packages to preserve the fruit were the ½ box ones, which proves that it is necessary to reduce the number of fruits per package to allow better ventilation and decreases mechanical injuries and ensure quality for more time.