957 resultados para Wordsworth, Christopher, Bp. of Lincoln, 1807-1885.
Resumo:
A new gene with WD domains is cloned and characterized according to its differential transcription and expression between previtellogenic oocytes (phase I oocytes) and fully-grown oocytes (phase V oocytes) from natural gynogenetic silver crucian carp (Carassius auratus gibelio) by using the combinative methods of suppressive subtraction hybridization, SMART cDNA synthesis and RACE-PCR. The full-length cDNA is 1870 bp. Its 5 ' untranslated region is 210 bp, followed by an open reading frame of 990 bp, which has the typical vertebrate initiator codon of ANNATG. The open reading frame encodes a protein with 329 amino acids. It has 670 bp of 3 ' untranslated region and an AATAAA polyadenylation signal. Because it has 92% homology to STRAP (serine-threonine kinase receptor-associated protein), a recently reported gene, we named it FSTRAP (fish STRAP). Virtual Northern blotting indicated that the FSTRAP was transcribed in fully-grown oocytes (phase V oocytes), but not in previtellogenic oocytes (phase I oocytes). RT-PCR analysis showed that FSTRAP was transcribed in brain, heart, kidney, muscle, ovary, spleen and testis, but not in liver. And its mRNA could be detected in the oocytes from phase II to phase V. Western blotting also showed that FSTRAP protein could be detected in brain, heart, kidney, muscle, ovary, spleen and testis except liver. Results of Western blotting on various oocytes were also similar to the RT-PCR data. FSTRAP protein was not expressed in the previtellogenic oocytes. Its expression initiated from phase II oocytes after vitellogenesis, and was consistent with the mRNA transcription.
Resumo:
1140 bp of cytochrome b gene were amplified and sequenced from 14 species of primitive cyprinid fishes in East Asia. Aligned with other ten cytochrome b gene sequences of cyprinid fish from Europe and North America retrieved from Gene bank, we obtained a matrix of 24 DNA sequences. A cladogram was generated by the method of Maximum likelihood for the primitive cyprinid fishes. The result indicated that subfamily Leuciscinae and Danioninae do not form a monophyletic group. In the subfamily Danioninae, Opsariichthys biden and Zacco platypus are very primitive and form a natural group and located at the root. But the genera in subfamily Danioninae are included in different groups and have not direct relationship. Among them, Aphyocypris chinensis and Yaoshanicus arcus form a monophyletic group. Tanichthys albonubes and Gobiocypris rarus have a close relation to Gobioninae. The genus Danio is far from other genera in Danioninae, In our cladogram, the genera in Leuciscinae were divided into two groups that have no direct relationship. The genera in Leuciscinae distributed in Europe, Sibera and North America, including Leuciscus, Rutilus, Phoxinus, N. crysole, Opsopoeodus emilae, form a monophyletic group. And the Leuciscinae in southern China including Ctenopharyngodon idellus, Mylopharyngodon piceus, Squalibarbus and Ochetobius elongatus have a common origination.
Resumo:
We surveyed mitochondrial DNA (mtDNA) sequence variation in the subfamily Xenocyprinae from China and used these data to estimate intraspecific, interspecific, and intergeneric phylogeny and assess biogeographic scenarios underlying the geographic structure of lineages. We sequenced 1140 bp of cytochrome b from 30 individuals of Xenocyprinae and one putative outgroup (Myxocypris asiaticus) and also sequenced 297 bp of ND4L, 1380 bp of ND4, 68 bp of tRNA(His), and 69 bp of tRNA(Ser) from 17 individuals of Xenocyprinae and the outgroup (M. asiaticus). We detected high levels of nucleotide variation among populations, species, and genera. The phylogenetic analysis suggested that Distoechodon hupeinensis might be transferred to the genus Xenocypris, the taxonomic status of the genus Plagiognathops might be preserved, and species of Xenocypris and Plagiognathops form a monophyletic group that is sister to the genus Distoechodon and Pseudobrama. The introgressive hybridization might occur among the populations of X. argentea and X. davidi, causing the two species to not be separated by mtDNA patterns according to their species identification, and the process and direction of hybridization are discussed. The spatial distributions of mtDNA lineages among populations of Xenocypris were compatible with the major geographic region, which indicated that the relationship between Hubei + Hunan and Fujian is closer than that between Hubei + Hunan and Sichuan, From a perspective of parasite investigation, our data suggested that the fauna of Hexamita in Xenocyprinae could be used to infer the phylogeny of their hosts. (C) 2001 Academic Press.
Resumo:
Through random sequencing, we found a total of 884000 base-pairs (bp) of random genomic sequences in the genome of Chinese shrimp (Fenneropenaeus chinensis). Using bio-soft Tandem Repeat Finder (TRF) software, 2159 tandem repeats were found, in which there were 1714 microsatellites and 445 minisatellites, accounting for 79.4% and 20.6% of repeat sequences, respectively. The cumulative length of repeat sequences was found to be 116685 bp, accounting for 13.2% of the total DNA sequence; the cumulative length of microsatellites occupied 9.78% of the total DNA sequence, and that of minisatellites occupied 3.42%. In decreasing order, the 20 most abundant repeat sequence classes were as follows: AT (557), AC (471), AG (274), AAT (92), A (56), AAG (28), ATC (27), ATAG (27), AGG (18), ACT (15), C (11), AAC (11), ACAT (11), CAGA (10), AGAA (9), AGGG (7), CAAA (7), CGCA (6), ATAA (6), AGAGAA (6). Dinucleotide repeats, not only in the aspect of the number, but also in cumulative length, were the preponderant repeat type. There were few classes and low copy numbers of repeat units of the pentanucleotide repeat type, which included only three classes: AGAGA, GAGGC and AAAGA. The classes and copy numbers of heptanucleotide, eleven-nucleotide and thirteen-nucleotide primer-number-composed repeats were distinctly less than that of repeat types beside them.
Resumo:
The cDNA encoding hsc70 of Chinese shrimp Fenneropenaeus chinensis was cloned from hepatopancreas by RT-PCR based on its EST sequence. The full length cDNA of 2090 bp contained an open reading frame of 1956 nucleotides and partial 5'- and 3'-untranslated region(5'- and 3'-UTR). PCR amplification and sequencing analysis showed the existence of introns in the region of 1-547 bp, but they did not exist in the region of 548-2090 bp of hsc70 cDNA. When the deduced 652 amino acid sequence of HSC70 was compared with the members of HSP70 family from other organisms, the results showed 85.9% similarity with HSC71 from Oncorhynchus mykiss and HSC70 from Homo sapiens. It also exhibited 85.8% similarity with HSP70 from Mus musculu and 85.4% with HSC70 from Manduca sexta. Expression analysis showed that hsc70 mRNA was espressed constitutively in hepatopancreas, muscle, eyestalks, haemocytes, heart, ovary, intestine and gills in Fenneropenaeus chinensis. No difference could be detected on hsc70 mRNA level in muscle between heat-shocked and control animals.
Resumo:
The phylogenetic relationships and species identification of pufferfishes of the genus Takifugu were examined by use of randomly amplified polymorphic DNA (RAPD) and sequencing of the amplified partial mitochondrial 16S ribosomal RNA genes. Amplifications with 200 ten-base primers under predetermined optimal reaction conditions yielded 1962 reproducible amplified fragments ranging from 200 to 3000 bp. Genetic distances between 5 species of Takifugu and Lagocephalus spadiceus as the outgroup were calculated from the presence or absence of the amplified fragments. Approximately 572 bp of the 16S ribosonial RNA gene was amplified, using universal primers, and used to determine the genetic distance values. Topological phylogenic trees for the 5 species of Takifugu and outgroup were generated from neighbor-joining analysis based on the data set of RAPD analysis and sequences of mitochondrial 16S rDNA. The genetic distance between Takifugu rubripes and Takifugu pseudommus was almost the same as that between individuals within cacti species, but much smaller than that between T. rubripes, T. pseudommus, and the other species. The molecular data gathered from both analysis of mitochondria and nuclear DNA strongly indicated that T. rubripes and T. pseudommus should be regarded as the same species. A fragment of approximately 900 bp was amplified from the genome of all 26 T. pseudommus individuals examined and 4 individuals of intermediate varieties between T. rubripes and T. pseudommus. Of the 32 T. rubripes individuals, only 3 had the amplified fragment. These results suggest that this fragment may be useful in distinguishing between T. rubripes and T. pseudommus.
Resumo:
We used nested-polymerase chain reaction (PCR) to detect Roundup Ready soybean in aquatic feeds and feeding tilapias. A template concentration of 10(-10) g mu L-1 DNA solution could be detected with a dilute degree of 0.01%. Most (90.6%) of the aquatic feeds containing soybean byproduct included exogenous DNA segments. We also compared genetically modified (GM) soybean with non-GM soybean diets in feeding tilapias (Oreochromis niloticus, GIFT strain) and examined the residual fragments (254 bp) of GM soybeans. Tilapias receiving GM soybean diets had DNA fragments in different tissues and organs, indicating that exogenous GM genes were absorbed systemically and not completely degraded by the tilapia's alimentary canal.
Resumo:
The complete mitochondrial (mt) DNA sequence was determined for a ridgetail white prawn, Exopalaemon carinicauda Holthuis, 1950 (Crustacea: Decopoda: Palaemonidae). The mt genome is 15,730 bp in length, encoding a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which is typical for metazoans. The majority-strand consists of 33.6% A, 23.0% C, 13.4% G, and 30.0% T bases (AT skew = 0.057: GC skew = -0.264). A total of 1045 bp of non-coding nucleotides were observed in 16 intergenic regions,,including a major A+ T rich (79.7%) noncoding region (886 bp). A novel translocation of tRNA(Pro) and tRNA(Thr) was found when comparing this genome with the pancrustacean ground pattern indicating that gene order is not conserved among caridean mitochondria. Furthermore, the rate of Ka/Ks in 13 protein-coding genes between three caridean species is Much less than 1, which indicates a strong Purifying selection within this group. To investigate the phylogenetic relationship within Malacostraca, phylogenetic trees based oil Currently available malacostracan complete mitochondrial sequences were built with the maximum likelihood and Bayesian models. All analyses based oil nucleotide and amino acid data strongly support the monophyly of Decapoda. The Penaeidae, Reptantia, Caridea, and Meiura clades were also recovered as monophyletic groups with Strong Statistical Support. However, the phylogenetic relationships within Pleocyemata are unstable, as represented by the inclusion or exclusion of Caridea. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Based on the 16S mitochondrial partial gene sequences of 29 genera, containing 26 from Oedipodidae and one each from Tanaoceridae, Pyrgomorphidae and Tetrigidae (as outgroups), the homologus sequences were compared and phylogenetic analyses were performed. A phylogenetic tree was inferred by neighbor-joining (NJ). The results of sequences compared show that: (i) in a total of 574 bp of Oedipodidae, the number of substituted nucleotides was 265 bp and the average percentages of T, C, A and G were 38.3%, 11.4%, 31.8% and 18.5%, respectively, and the content of A+T (70.1%) was distinctly richer than that of C+G (29.9%); and (ii) the average nucleotide divergence of 16S rDNA sequences among genera of Oedipodidae were 9.0%, among families of Acridoidea were 17.0%, and between superfamilies (Tetrigoidea and Acridoidea) were 23.9%, respectively. The phylogenetic tree indicated: (i) the Oedipodidae was a monophyletic group, which suggested that the taxonomic status of this family was confirmed; (ii) the genus Heteropternis separated from the other Oedipodids first and had another unique sound-producing structure in morphology, which is the type-genus of subfamily Heteropterninae; and (iii) the relative intergeneric relationship within the same continent was closer than that of different continents, and between the Eurasian genera and the African genera, was closer than that between Eurasians and Americans.
Resumo:
Kinesins are common in a variety of eukaryotic cells with diverse functions. A cDNA encoding a member of the Kinesin-14B subfamily is obtained using X-RACE technology and named AtKP1 (for Arabidopsis kinesin protein 1). This cDNA has a maximum open reading frame of 3.3 kb encoding a polypeptide of 1087 aa. Protein domain analysis shows that AtKP1 contains the motor domain and the calponin homology domain in the central and amino-terminal regions, respectively. The carboxyl-terminal region with 202 aa residues is diverse from other known kinesins. Northern blot analysis shows that AtKP1 is widely expressed at a higher level in seedlings than in mature plants. 2808 bp of the AtKP1 promoter region is cloned and fused to GUS. GUS expression driven by the AtKP1 promoter region shows that AtKP1 is mainly expressed in vasculature of young organs and young leaf trichomes, indicating that AtKP1 may participate in the differentiation or development of Arabidopsis thaliana vascular bundles and trichomes. A truncated AtKP1 protein containing the putative motor domain is expressed in E. coli and affinity-purified. In vitro characterizations indicate that the polypeptide has nucleotide-dependent microtubule-binding ability and microtubule-stimulated ATPase activity.
Resumo:
Background: The domestication of plants and animals was extremely important anthropologically. Previous studies have revealed a general tendency for populations of livestock species to include deeply divergent maternal lineages, indicating that they were domesticated in multiple, independent events from genetically discrete wild populations. However, in water buffalo, there are suggestions that a similar deep maternal bifurcation may have originated from a single population. These hypotheses have rarely been rigorously tested because of a lack of sufficient wild samples. To investigate the origin of the domestic yak (Poephagus grunnies), we analyzed 637 bp of maternal inherited mtDNA from 13 wild yaks (including eight wild yaks from a small population in west Qinghai) and 250 domesticated yaks from major herding regions.Results: The domestic yak populations had two deeply divergent phylogenetic groups with a divergence time of > 100,000 yrs BP. We here show that haplotypes clustering with two deeply divergent maternal lineages in domesticated yaks occur in a single, small, wild population. This finding suggests that all domestic yaks are derived from a single wild gene pool. However, there is no clear correlation of the mtDNA phylogenetic clades and the 10 morphological types of sampled yaks indicating that the latter diversified recently. Relatively high diversity was found in Qinghai and Tibet around the current wild distribution, in accordance with previous suggestions that the earliest domestications occurred in this region. Conventional molecular clock estimation led to an unrealistic early dating of the start of the domestication. However, Bayesian estimation of the coalescence time allowing a relaxation of the mutation rateConclusion: The information gathered here and the previous studies of other animals show that the demographic histories of domestication of livestock species were highly diverse despite the common general feature of deeply divergent maternal lineages. The results further suggest that domestication of local wild prey ungulate animals was a common occurrence during the development of human civilization following the postglacial colonization in different locations of the world, including the high, arid Qinghai-Tibetan Plateau.
Resumo:
The complete 1140 bp mitochondial cytochrome b sequences were obtained from 39 individuals representing five species of all four genera of highly specialized schizothoracine fishes distributed in the Qinghai-Tibet plateau. Sequence variation of the cytochrome b gene was surveyed among the 39 individuals as well as three primitive schizothoracines and one outgroup. Phylogenetic analysis suggested that the group assignment based on 1140 bp of the cytochrome b sequence is obviously; different from previous assignments, and the highly specialized schizothoracine fishes (Schizopygopsis pylzovi, Gymnocypris przewalskii, G. eckloni, Chuanchia lablosa, and Platypharodon extremus) form a monophyletic group that is sister to the clade formed by the primitive schizothoracine fishes (Schizothorax prenanti, S. pseudaksaiensis, and S. argentatus). The haplotypes of Schizopygopsis pylzovi and G. przewalskii were paraphyletic based on cytochrome b data, which most likely reflected incomplete sorting of mitochondrial DNA lineages. The diploid chromosome numbers of Schizofhoracinae were considered in phylogenetic analysis and provided a clear pattern of relationships. Molecular dating estimated for highly specialized schizothoracine fishes suggested that the highly specialized schizothoracine fishes diverged in the late Miocene Pliocene to Pleistocene (4.5x10(4)-4.05x10(6) Years BP). The relationship between the cladogenesis of highly specialized schizothoracine fishes and geographical events of the Qinghai-Tibet plateau is discussed.
Resumo:
Based on the mitochondrial 16S ribosomal DNA partial sequences (473 bp) of 9 species of Pamphagidae (Acridoidea, Orthoptera) from China and of 4 species of Pamphagidae and 2 species of Pyrgomorphidae and Acrididae (as outgroups) retrieved from GenBank, we constructed the molecular phylogeny using the Neighbor Joining (NJ) and Minimum Evolution ( ME) methods based on the nucleotide Kimura 2-parameter model. The results of our study shown that: 1) the ranges of the 16S rDNA nucleotide divergence between two species of a genus were 0.21%, among genera of a subfamily were 0.42-3.38%, and among subfamilies of Pamphagidae were 1.90-8.88%, respectively. The phylogenetic tree shows that: 1) all Pamphagidae taxa form a monophyletic clade, and are well separated from the outgroup; 2) the African taxa Porthetinae (Lobosceliana brevicornis) and Akicerinae (Batrachotetrix sp.) are distinctly separated from the Chinese taxa Prionotropisinae; 3) Haplotropis bruneriana and Glauia terrea of Pamphaginae are nested in the middle of the tree, but their phylogenetic status is uncertain in this study; 4) 8 genera of Asiotmethis, Beybienkia, Mongolotmethis, Sinotmethis, Rhinotmethis, Filchnerella, Eotmethis and Pseudotmethis from China are all grouped into the subfamily Prionotropisinae, but their phylogenetic relationships are not clearly resolved.
Resumo:
*This extract is from Gay P. Crowther's description of the Randall Court pathway (Cowther 1985).
Resumo:
Glycogen storage disease type-Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest impaired glucose homeostasis characterized by fasting hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. Two efficacious recombinant adeno-associated virus pseudotype 2/8 (rAAV8) vectors expressing human G6Pase-α have been independently developed. One is a single-stranded vector containing a 2864-bp of the G6PC promoter/enhancer (rAAV8-GPE) and the other is a double-stranded vector containing a shorter 382-bp minimal G6PC promoter/enhancer (rAAV8-miGPE). To identify the best construct, a direct comparison of the rAAV8-GPE and the rAAV8-miGPE vectors was initiated to determine the best vector to take forward into clinical trials. We show that the rAAV8-GPE vector directed significantly higher levels of hepatic G6Pase-α expression, achieved greater reduction in hepatic glycogen accumulation, and led to a better toleration of fasting in GSD-Ia mice than the rAAV8-miGPE vector. Our results indicated that additional control elements in the rAAV8-GPE vector outweigh the gains from the double-stranded rAAV8-miGPE transduction efficiency, and that the rAAV8-GPE vector is the current choice for clinical translation in human GSD-Ia.