941 resultados para Woody vegetation
Resumo:
The proportion of chemical elements passing through vegetation prior to being exported in a stream was quantified for a forested tropical watershed(Mule Hole, South India) using an extensive hydrological and geochemical monitoring at several scales. First, a solute annual mass balance was established at the scale of the soil-plant profile for assessing the contribution of canopy interaction and litter decay to the solute fluxes of soil inputs (overland flow) and soil outputs (pore water flow as seepages). Second, based on the respective contributions of overland flow and seepages to the stream flow as estimated by a hydrological lumped model, we assigned the proportion of chemical elements in the stream that transited through the vegetation at both flood event (End Member Mixing Analysis) and seasonal scales. At the scale of the 1D soil-plant profile, leaching from the canopy constituted the main source of K above the ground surface. Litter decay was the main source of Si, whereas alkalinity, Ca and Mg originated in the same proportions from both sources. The contribution of vegetation was negligible for Na. Within the soil, all elements but Na were removed from the pore water in proportions varying from 20% for Cl to 95% for K: The soil output fluxes corresponded to a residual fraction of the infiltration fluxes. The behavior of K, Cl, Ca and Mg in the soil-plant profile can be explained by internal cycling, as their soil output fluxes were similar to the atmospheric inputs. Na was released from soils as a result of Na-plagioclase weathering and accompanied by additional release of Si. Concentration of soil pore water by evapotranspiration might limit the chemical weathering in the soil. Overall, the solute K, Ca, Mg, alkalinity and Si fluxes associated with the vegetation turnover within the small experimental watershed represented 10-15 times the solute fluxes exported by the stream, of which 83-97% transited through the vegetation. One important finding is that alkalinity and Si fluxes at the outlet were not linked to the ``current weathering'' of silicates in this watershed. These results highlight the dual effect of the vegetation cover on the solute fluxes exported from the watershed: On one hand the runoff was limited by evapotranspiration and represented only 10% of the annual rainfall, while on the other hand, 80-90% of the overall solute flux exported by the stream transited through the vegetation. The approach combining geochemical monitoring and accurate knowledge of the watershed hydrological budget provided detailed understanding of several effects of vegetation on stream fluxes: (1) evapotranspiration (limiting), (2) vertical transfer through vegetation from vadose zone to ground surface (enhancing) and (3) redistribution by throughfalls and litter decay. It provides a good basis for calibrating geochemical models and more precisely assessing the role of vegetation on soil processes. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Woody tree species in seasonally dry tropical forests are known to have traits that help them to recover from recurring disturbances such as fire. Two such traits are resprouting and rapid post-fire growth. We compared survival and growth rates of regenerating small-sized individuals (juveniles) of woody tree species after dry season fire (February-March) at eight adjacent pairs of burnt and unburnt transects in a seasonally dry tropical forest in southern India. Juveniles were monitored at 3-mo intervals between August 2009 and August 2010. High juvenile survivorship (>95%) was observed in both burnt and unburnt areas. Growth rates of juveniles, analyzed at the community level as well as for a few species individually (especially fast-growing ones), were distinctly higher in burnt areas compared to unburnt areas after a fire event, particularly during the pre-monsoon season immediately after a fire. Rapid growth by juveniles soon after a fire may be due to lowered competition from other vegetative forms such as grasses, possibly aided by the availability of resources stored belowground. Such an adaptation would allow a juvenile bank to be retained in the understory of a dry forest, from where individuals can grow to a possible fire-tolerant size during favorable conditions.
Resumo:
Elephant are considered major drivers of ecosystems, but their effects within small-scale landscape features and on other herbivores still remain unclear. Elephant impact on vegetation has been widely studied in areas where elephant have been present for many years. We therefore examined the combined effect of short-term elephant presence (< 4 years) and hillslope position on tree species assemblages, resource availability, browsing intensity and soil properties. Short-term elephant presence did not affect woody species assemblages, but did affect height distribution, with greater sapling densities in elephant access areas. Overall tree and stem densities were also not affected by elephant. By contrast, slope position affected woody species assemblages, but not height distributions and densities. Variation in species assemblages was statistically best explained by levels of total cations, Zinc, sand and clay. Although elephant and mesoherbivore browsing intensities were unaffected by slope position, we found lower mesoherbivore browsing intensity on crests with high elephant browsing intensity. Thus, elephant appear to indirectly facilitate the survival of saplings, via the displacement of mesoherbivores, providing a window of opportunity for saplings to grow into taller trees. In the short-term, effects of elephant can be minor and in the opposite direction of expectation. In addition, such behavioural displacement promotes recruitment of saplings into larger height classes. The interaction between slope position and elephant effect found here is in contrast with other studies, and illustrates the importance of examining ecosystem complexity as a function of variation in species presence and topography. The absence of a direct effect of elephant on vegetation, but the presence of an effect on mesoherbivore browsing, is relevant for conservation areas especially where both herbivore groups are actively managed.
Resumo:
Sacred groves are patches of forests of special spiritual significance to humans, offering also a diverse range of ecological and environmental services. We have attempted here to understand the local hydrological dynamics of a sacred forest, in terms of the benefits the village community derive, in central Western Ghats region of India. A comparative assessment has been made between two small watersheds in terms of their landscape structure (woody species composition) with soil water properties and availability of water in the respective downstream villages. The result shows that, sacred site with more primeval vegetation has close association with soil moisture in comparison to non-sacred site during dry spell of the year. The higher soil moisture ensures year long availability of water in the downstream village of the sacred site which facilitates farming of commercial crops with higher economic returns to the farmers, unlike the farmers in the other village where they face water crisis during the lean season. The study emphasizes the need for conservation endeavour on sacred groves highlighting its potential for water conservation at local and regional levels.
Resumo:
Despite high vulnerability, the impact of climate change on Himalayan ecosystem has not been properly investigated, primarily due to the inadequacy of observed data and the complex topography. In this study, we mapped the current vegetation distribution in Kashmir Himalayas from NOAA AVHRR and projected it under A1B SRES, RCP-4.5 and RCP-8.5 climate scenarios using the vegetation dynamics model-IBIS at a spatial resolution of 0.5A degrees. The distribution of vegetation under the changing climate was simulated for the 21st century. Climate change projections from the PRECIS experiment using the HADRM3 model, for the Kashmir region, were validated using the observed climate data from two observatories. Both the observed as well as the projected climate data showed statistically significant trends. IBIS was validated for Kashmir Himalayas by comparing the simulated vegetation distribution with the observed distribution. The baseline simulated scenario of vegetation (1960-1990), showed 87.15 % agreement with the observed vegetation distribution, thereby increasing the credibility of the projected vegetation distribution under the changing climate over the region. According to the model projections, grasslands and tropical deciduous forests in the region would be severely affected while as savannah, shrubland, temperate evergreen broadleaf forest, boreal evergreen forest and mixed forest types would colonize the area currently under the cold desert/rock/ice land cover types. The model predicted that a substantial area of land, presently under the permanent snow and ice cover, would disappear by the end of the century which might severely impact stream flows, agriculture productivity and biodiversity in the region.
Resumo:
In the present paper, we present the structure and composition of tropical evergreen and deciduous forests in the Western Ghats monitored under a long-term programme involving Indian Institute of Science, Earthwatch and volunteer investigators from HSBC. Currently, there is limited evidence on the status and dynamics of tropical forests in the context of human disturbance and climate change. Observations made in this study show that the `more disturbed' evergreen and one of the deciduous plots have low species diversity compared to the less-disturbed forests. There are also variations in the size class structure in the more and `less disturbed' forests of all the locations. The variation is particularly noticeable in the DBH size class 10 - 15 cm category. When biomass stock estimates are considered, there was no significant difference between evergreen and deciduous forests. The difference in biomass stocks between `less disturbed' and `more disturbed' forests within a forest type is also low. Thus, the biomass and carbon stock has not been impacted despite the dependence of communities on the forests. Periodic and long-term monitoring of the status and dynamics of the forests is necessary in the context of potential increased human pressure and climate change. There is, therefore, a need to inform the communities of the impact of extraction and its effect on regeneration so as to motivate them to adopt what may be termed as ``adaptive resource management'', so as to sustain the flow of forest products.
Resumo:
The non-availability of high-spatial-resolution thermal data from satellites on a consistent basis led to the development of different models for sharpening coarse-spatial-resolution thermal data. Thermal sharpening models that are based on the relationship between land-surface temperature (LST) and a vegetation index (VI) such as the normalized difference vegetation index (NDVI) or fraction vegetation cover (FVC) have gained much attention due to their simplicity, physical basis, and operational capability. However, there are hardly any studies in the literature examining comprehensively various VIs apart from NDVI and FVC, which may be better suited for thermal sharpening over agricultural and natural landscapes. The aim of this study is to compare the relative performance of five different VIs, namely NDVI, FVC, the normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI), for thermal sharpening using the DisTrad thermal sharpening model over agricultural and natural landscapes in India. Multi-temporal LST data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors obtained over two different agro-climatic grids in India were disaggregated from 960 m to 120 m spatial resolution. The sharpened LST was compared with the reference LST estimated from the Landsat data at 120 m spatial resolution. In addition to this, MODIS LST was disaggregated from 960 m to 480 m and compared with ground measurements at five sites in India. It was found that NDVI and FVC performed better only under wet conditions, whereas under drier conditions, the performance of NDWI was superior to other indices and produced accurate results. SAVI and MSAVI always produced poorer results compared with NDVI/FVC and NDWI for wet and dry cases, respectively.
Resumo:
In this paper, a ground hydrologic model(GHM) is presented in which the vapor, heat and momentum exchanges between ground surface covers (including vegetation canopy) and atmosphere is described more realistically. The model is used to simulate three sets of field data and results from the numerical simulation agree with the field data well. GHM has been tested using input data generated by general circulation model (GCM) runs for both the North American regions and the Chinese regions, The results from GHM are quite different from those of GHMs in GCMs. It shows that a more active concerted effort on the land surface process study to provide a physically realistic GHM for predicting the exchange between land and atmosphere is important and necessary.
Resumo:
Population characteristics of largemouth bass ( Micropterus salmoides L.) including growth, body condition (relative weight), survival, and egg production were examined in relation to abundance of submersed aquatic vegetation (SAV) coverage (primarily hydrilla [ Hydrilla verticillata L.f. Royle]) in three embayments of Lake Seminole, GA, and compared to a previous study conducted in 1998. (PDF has 8 pages.)
Resumo:
Whole-lake techniques are increasingly being used to selectively remove exotic plants, including Eurasian watermilfoil ( Myriophyllum spicatum L.). Fluridone (1-methyl-3-phenyl- 5-[3-(trifluoromethyl)phenyl]-4(1 H )-pyridinone), a systemic whole-lake herbicide, is selective for Eurasian watermilfoil within a narrow low concentration range. Because fluridone applications have the potential for large effects on plant assemblages and lake food webs, they should be evaluated at the whole-lake scale. We examined effects of low-dose (5 to 8 ppb) fluridone applications by comparing submersed plant assemblages, water quality and largemouth bass ( Micropterus salmoides ) growth rates and diets between three reference lakes and three treatment lakes one- and two-years post treatment. In the treatment lakes, fluridone reduced Eurasian watermilfoil cover without reducing native plant cover, although the duration of Eurasian watermilfoil reduction varied among treatment lakes. (PDF has 11 pages.)
Resumo:
Angler creel surveys and economic impact models were used to evaluate potential expansion of aquatic vegetation in Lakes Murray and Moultrie, South Carolina. (PDF contains 4 pages.)
Resumo:
From 1997 to 2003, we examined the impacts of two aquatic herbicides, fluridone (Sonar; 1-methyl-3-phenyl-5-[3-(trifluromethl) phenyl]-4(1H)-pyridinone), and dipotassium salt of endothall (Aquathol K; 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid), used to control dense hydrilla (Hydrilla verticillata L. f. Royle), on population characteristics of juvenile largemouth bass (Micropterus salmoides Lacepede) in small coves (<10 ha) in Lake Seminole, Georgia. In addition, we estimated areal coverage and species composition of submersed aquatic vegetation (SAV) communities in each cove. Fish and plants were sampled in both control (hydrilla infested)and herbicide treated coves in November and March- April each year. Electrofishing catch-per-effort for both number and weight of age-0 and age-1 fish for the 1997 to 2002 year classes was either the same or higher (p < 0.05) in herbicide treated than in control coves. Age-0 fish were larger (p <0.05) in treated, than in control coves in November, but at age-1 in the following spring, fish were slightly longer (p <0.05) in the control coves. Higher age-0 catches were associated with greater percent reductions in numeric catch between age-0 and age-1 and reduced lengths of fish in November indicating density-dependent effects. Age-0 fish lengths were also negatively correlated to percent cover of both total and native SAV. Total or native SAV coverages were not associated with catch-per-unit effort for number and weight, but nearly all control and herbicide treated coves had total SAV coverage greater than 40%. Applications of both Sonar and Aquathol K reduced total SAV coverage and hydrilla, permitted the establishment of native SAVs, and had either neutral or positive impacts on young largemouth bass in small coves in Lake Seminole. (PDF contains 7 pages.)
Resumo:
Dense, monospecific cattail (Typha spp.) stands are a problem in many prairie wetlands because they alter habitat structure and function, resulting in a decrease in use by wildlife species. Cheyenne Bottoms Wildlife Area, a Wetland of International Importance in central Kansas, has experienced a large increase in cattails and a subsequent decrease in migratory wetland bird use. As a consequence, intensive cattail management is practiced. We assessed the effectiveness of prescribed burning, discing following prescribed burning, and cattle grazing following prescribed burning at two stocking rates of 5 and 20 head per 11 ha in suppressing cattail, as well as the effects of these treatments on non-cattail vegetation.
Resumo:
Population characteristics of largemouth bass (Micropterous salmoides L.) including growth, body condition (relative weight), size structure, survival, and fecundity were examined in relation to abundance of submersed aquatic vegetation (SAV) coverage (primarily hydrilla Hydrilla verticillata L.f. Royle) in three major embayments of Lake Seminole, Georgia. Relative weight, fecundity, and growth of large-mouth bass in the Spring Creek embayment (76% areal SAV coverage) was considerably less than measured in the Chattahoochee and Flint river arms that contained lower SAV coverages (26% and 32%). It took fish 1.8 years longer to reach 406 mm in Spring Creek compared to the Chattahoochee-Flint arms. Consequently, fish were smaller in Spring Creek than in the Chattahoochee-Flint arms. In addition, due to slower growth rates and lower fecundity-to-body weight relation, we predicted a 47% reduction in total potential ova production in Spring Creek compared to the other two reservoir embayments. The annual survival rate of 3 to 10 year old largemouth bass was higher in Spring Creek (84%) than in the Chattahoochee-Flint arms (72%) and suggested either lower harvest and/or lower accessibility of particularly larger fish to angling in dense vegetation. Contrary to our expectaions, the fit between number-at-age and age in a catch-curve regression was weaker for fish collected in Spring Creek and suggested greater recruitment variability has occurred over time in this highly vegetated embayment. In Lake Seminole, spatial differences in largemouth bass population characterstics were associated with disparate levels of SAV. Our data suggest that a reduction in hydrilla, but maintenance of an intermediate level of SAV in Spring Creek, should improve largermouth bass population in this arm of the reservoir.
Resumo:
Projects of the scope of the restoration of the Florida Everglades require substantial information regarding ecological mechanisms, and these are often poorly understood. We provide critical base knowledge for Everglades restoration by characterizing the existing vegetation communities of an Everglades remnant, describing how present and historic hydrology affect wetland vegetation community composition, and documenting change from communities described in previous studies. Vegetation biomass samples were collected along transects across Water Conservation Area 3A South (3AS).