761 resultados para Wireless Mesh Networks. IEEE 802.11s. Testbeds. Management
Resumo:
Studio e realizzazione di una rete wireless di microcontrollori dotati di sensori, che comunicano mediante protocollo ZigBee (basato sul protocollo IEEE 802.15.4).
Resumo:
Wireless sensor networks (WSNs) consist of a large number of sensor nodes, characterized by low power constraint, limited transmission range and limited computational capabilities [1][2].The cost of these devices is constantly decreasing, making it possible to use a large number of sensor devices in a wide array of commercial, environmental, military, and healthcare fields. Some of these applications involve placing the sensors evenly spaced on a straight line for example in roads, bridges, tunnels, water catchments and water pipelines, city drainages, oil and gas pipelines etc., making a special class of these networks which we define as a Linear Wireless Network (LWN). In LWNs, data transmission happens hop by hop from the source to the destination, through a route composed of multiple relays. The peculiarity of the topology of LWNs, motivates the design of specialized protocols, taking advantage of the linearity of such networks, in order to increase reliability, communication efficiency, energy savings, network lifetime and to minimize the end-to-end delay [3]. In this thesis a novel contention based Medium Access Control (MAC) protocol called L-CSMA, specifically devised for LWNs is presented. The basic idea of L-CSMA is to assign different priorities to nodes based on their position along the line. The priority is assigned in terms of sensing duration, whereby nodes closer to the destination are assigned shorter sensing time compared to the rest of the nodes and hence higher priority. This mechanism speeds up the transmission of packets which are already in the path, making transmission flow more efficient. Using NS-3 simulator, the performance of L-CSMA in terms of packets success rate, that is, the percentage of packets that reach destination, and throughput are compared with that of IEEE 802.15.4 MAC protocol, de-facto standard for wireless sensor networks. In general, L-CSMA outperforms the IEEE 802.15.4 MAC protocol.
Resumo:
To interconnect a wireless sensor network (WSN) to the Internet, we propose to use TCP/IP as the standard protocol for all network entities. We present a cross layer designed communication architecture, which contains a MAC protocol, IP, a new protocol called Hop-to-Hop Reliability (H2HR) protocol, and the TCP Support for Sensor Nodes (TSS) protocol. The MAC protocol implements the MAC layer of beacon-less personal area networks (PANs) as defined in IEEE 802.15.4. H2HR implements hop-to-hop reliability mechanisms. Two acknowledgment mechanisms, explicit and implicit ACK are supported. TSS optimizes using TCP in WSNs by implementing local retransmission of TCP data packets, local TCP ACK regeneration, aggressive TCP ACK recovery, congestion and flow control algorithms. We show that H2HR increases the performance of UDP, TCP, and RMST in WSNs significantly. The throughput is increased and the packet loss ratio is decreased. As a result, WSNs can be operated and managed using TCP/IP.
Resumo:
The implementation of wireless communication systems in rural areas through the deployment of data networks in infrastructure mode is often inadequate due to its high cost and no fault tolerant centralized structure. Mesh networks can overcome these limitations while increases the coverage area in a more flexible way. This paper proposes the performance evaluation of the routing protocols IEEE 802.11s and Batman-Adv on an experimental wireless mesh network deployed in a rural environment called Lachocc, which is a community located at 4700 MASL in the Huancavelica region in Peru. The evaluation was based on the measurement of quality of service parameters such as bandwidth, delay and delay variation. As a result, it was determined that both protocols offer a good performance, but in most of the cases, Batman-Adv provides slightly better performance
Resumo:
IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows. © 2012 KSI.
Resumo:
In this letter we propose an Markov model for slotted CSMA/CA algorithm working in a non-acknowledgement mode, specified in IEEE 802.15.4 standard. Both saturation throughput and energy consumption are modeled as functions of backoff window size, number of contending devices and frame length. Simulations show that the proposed model can achieve a very high accuracy (less than 1% mismatch) if compared to all existing models (bigger than 10% mismatch).
Resumo:
IEEE 802.16 standard specifies two contention based bandwidth request schemes working with OFDM physical layer specification in point-to-multipoint (PMP) architecture, the mandatory one used in region-full and the optional one used in region-focused. This letter presents a unified analytical model to study the bandwidth efficiency and channel access delay performance of the two schemes. The impacts of access parameters, available bandwidth and subchannelization have been taken into account. The model is validated by simulations. The mandatory scheme is observed to perform closely to the optional one when subchannelization is active for both schemes.
Resumo:
The low-energy consumption of IEEE 802.15.4 networks makes it a strong candidate for machine-to-machine (M2M) communications. As multiple M2M applications with 802.15.4 networks may be deployed closely and independently in residential or enterprise areas, supporting reliable and timely M2M communications can be a big challenge especially when potential hidden terminals appear. In this paper, we investigate two scenarios of 802.15.4 network-based M2M communication. An analytic model is proposed to understand the performance of uncoordinated coexisting 802.15.4 networks. Sleep mode operations of the networks are taken into account. Simulations verified the analytic model. It is observed that reducing sleep time and overlap ratio can increase the performance of M2M communications. When the networks are uncoordinated, reducing the overlap ratio can effectively improve the network performance. © 2012 Chao Ma et al.
Resumo:
IEEE 802.15.4 standard has been recently developed for low power wireless personal area networks. It can find many applications for smart grid, such as data collection, monitoring and control functions. The performance of 802.15.4 networks has been widely studied in the literature. However the main focus has been on the modeling throughput performance with frame collisions. In this paper we propose an analytic model which can model the impact of frame collisions as well as frame corruptions due to channel bit errors. With this model the frame length can be carefully selected to improve system performance. The analytic model can also be used to study the 802.15.4 networks with interference from other co-located networks, such as IEEE 802.11 and Bluetooth networks. © 2011 Springer-Verlag.