953 resultados para Wireless Application Protocol
Resumo:
To exploit the popularity of TCP as still the dominant sender and protocol of choice for transporting data reliably across the heterogeneous Internet, this thesis explores end-to-end performance issues and behaviours of TCP senders when transferring data to wireless end-users. The theme throughout is on end-users located specifically within 802.11 WLANs at the edges of the Internet, a largely untapped area of work. To exploit the interests of researchers wanting to study the performance of TCP accurately over heterogeneous conditions, this thesis proposes a flexible wired-to-wireless experimental testbed that better reflects conditions in the real-world. To exploit the transparent functionalities between TCP in the wired domain and the IEEE 802.11 WLAN protocols, this thesis proposes a more accurate methodology for gauging the transmission and error characteristics of real-world 802.11 WLANs. It also aims to correlate any findings with the functionality of fixed TCP senders. To exploit the popularity of Linux as a popular operating system for many of the Internet’s data servers, this thesis studies and evaluates various sender-side TCP congestion control implementations within the recent Linux v2.6. A selection of the implementations are put under systematic testing using real-world wired-to-wireless conditions in order to screen and present a viable candidate/s for further development and usage in the modern-day heterogeneous Internet. Overall, this thesis comprises a set of systematic evaluations of TCP senders over 802.11 WLANs, incorporating measurements in the form of simulations, emulations, and through the use of a real-world-like experimental testbed. The goal of the work is to ensure that all aspects concerned are comprehensively investigated in order to establish rules that can help to decide under which circumstances the deployment of TCP is optimal i.e. a set of paradigms for advancing the state-of-the-art in data transport across the Internet.
Resumo:
Wireless sensor networks have been identified as one of the key technologies for the 21st century. In order to overcome their limitations such as fault tolerance and conservation of energy, we propose a middleware solution, In-Motes. In-Motes stands as a fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort the deployed applications to run in an energy efficient manner inside the network. The proposed scheme is evaluated through the In-Motes EYE application, aiming to test its merits under real time conditions. In-Motes EYE application which is an agent based real time In-Motes application developed for sensing acceleration variations in an environment. The application was tested in a prototype area, road alike, for a period of four months.
Resumo:
In-Motes Bins is an agent based real time In-Motes application developed for sensing light and temperature variations in an environment. In-Motes is a mobile agent middleware that facilitates the rapid deployment of adaptive applications in Wireless Sensor Networks (WSN's). In-Motes Bins is based on the injection of mobile agents into the WSN that can migrate or clone following specific rules and performing application specific tasks. Using In-Motes we were able to create and rapidly deploy our application on a WSN consisting of 10 MICA2 motes. Our application was tested in a wine store for a period of four months. In this paper we present the In-Motes Bins application and provide a detailed evaluation of its implementation. © 2007 IEEE.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
The wide adaptation of Internet Protocol (IP) as de facto protocol for most communication networks has established a need for developing IP capable data link layer protocol solutions for Machine to machine (M2M) and Internet of Things (IoT) networks. However, the wireless networks used for M2M and IoT applications usually lack the resources commonly associated with modern wireless communication networks. The existing IP capable data link layer solutions for wireless IoT networks provide the necessary overhead minimising and frame optimising features, but are often built to be compatible only with IPv6 and specific radio platforms. The objective of this thesis is to design IPv4 compatible data link layer for Netcontrol Oy's narrow band half-duplex packet data radio system. Based on extensive literature research, system modelling and solution concept testing, this thesis proposes the usage of tunslip protocol as the basis for the system data link layer protocol development. In addition to the functionality of tunslip, this thesis discusses the additional network, routing, compression, security and collision avoidance changes required to be made to the radio platform in order for it to be IP compatible while still being able to maintain the point-to-multipoint and multi-hop network characteristics. The data link layer design consists of the radio application, dynamic Maximum Transmission Unit (MTU) optimisation daemon and the tunslip interface. The proposed design uses tunslip for creating an IP capable data link protocol interface. The radio application receives data from tunslip and compresses the packets and uses the IP addressing information for radio network addressing and routing before forwarding the message to radio network. The dynamic MTU size optimisation daemon controls the tunslip interface maximum MTU size according to the link quality assessment calculated from the radio network diagnostic data received from the radio application. For determining the usability of tunslip as the basis for data link layer protocol, testing of the tunslip interface is conducted with both IEEE 802.15.4 radios and packet data radios. The test cases measure the radio network usability for User Datagram Protocol (UDP) based applications without applying any header or content compression. The test results for the packet data radios reveal that the typical success rate for packet reception through a single-hop link is above 99% with a round-trip-delay of 0.315s for 63B packets.
Resumo:
Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.
Resumo:
The objective of the work described in this dissertation is the development of new wireless passive force monitoring platforms for applications in the medical field, specifically monitoring lower limb prosthetics. The developed sensors consist of stress sensitive, magnetically soft amorphous metallic glass materials. The first technology is based on magnetoelastic resonance. Specifically, when exposed to an AC excitation field along with a constant DC bias field, the magnetoelastic material mechanically vibrates, and may reaches resonance if the field frequency matches the mechanical resonant frequency of the material. The presented work illustrates that an applied loading pins portions of the strip, effectively decreasing the strip length, which results in an increase in the frequency of the resonance. The developed technology is deployed in a prototype lower limb prosthetic sleeve for monitoring forces experienced by the distal end of the residuum. This work also reports on the development of a magnetoharmonic force sensor comprised of the same material. According to the Villari effect, an applied loading to the material results in a change in the permeability of the magnetic sensor which is visualized as an increase in the higher-order harmonic fields of the material. Specifically, by applying a constant low frequency AC field and sweeping the applied DC biasing field, the higher-order harmonic components of the magnetic response can be visualized. This sensor technology was also instrumented onto a lower limb prosthetic for proof of deployment; however, the magnetoharmonic sensor illustrated complications with sensor positioning and a necessity to tailor the interface mechanics between the sensing material and the surface being monitored. The novelty of these two technologies is in their wireless passive nature which allows for long term monitoring over the life time of a given device. Additionally, the developed technologies are low cost. Recommendations for future works include improving the system for real-time monitoring, useful for data collection outside of a clinical setting.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
Resumo:
Nowadays, information security is a very important topic. In particular, wireless networks are experiencing an ongoing widespread diffusion, also thanks the increasing number of Internet Of Things devices, which generate and transmit a lot of data: protecting wireless communications is of fundamental importance, possibly through an easy but secure method. Physical Layer Security is an umbrella of techniques that leverages the characteristic of the wireless channel to generate security for the transmission. In particular, the Physical Layer based-Key generation aims at allowing two users to generate a random symmetric keys in an autonomous way, hence without the aid of a trusted third entity. Physical Layer based-Key generation relies on observations of the wireless channel, from which harvesting entropy: however, an attacker might possesses a channel simulator, for example a Ray Tracing simulator, to replicate the channel between the legitimate users, in order to guess the secret key and break the security of the communication. This thesis work is focused on the possibility to carry out a so called Ray Tracing attack: the method utilized for the assessment consist of a set of channel measurements, in different channel conditions, that are then compared with the simulated channel from the ray tracing, to compute the mutual information between the measurements and simulations. Furthermore, it is also presented the possibility of using the Ray Tracing as a tool to evaluate the impact of channel parameters (e.g. the bandwidth or the directivity of the antenna) on the Physical Layer based-Key generation. The measurements have been carried out at the Barkhausen Institut gGmbH in Dresden (GE), in the framework of the existing cooperation agreement between BI and the Dept. of Electrical, Electronics and Information Engineering "G. Marconi" (DEI) at the University of Bologna.
Resumo:
The importance of networks, in their broad sense, is rapidly and massively growing in modern-day society thanks to unprecedented communication capabilities offered by technology. In this context, the radio spectrum will be a primary resource to be preserved and not wasted. Therefore, the need for intelligent and automatic systems for in-depth spectrum analysis and monitoring will pave the way for a new set of opportunities and potential challenges. This thesis proposes a novel framework for automatic spectrum patrolling and the extraction of wireless network analytics. It aims to enhance the physical layer security of next generation wireless networks through the extraction and the analysis of dedicated analytical features. The framework consists of a spectrum sensing phase, carried out by a patrol composed of numerous radio-frequency (RF) sensing devices, followed by the extraction of a set of wireless network analytics. The methodology developed is blind, allowing spectrum sensing and analytics extraction of a network whose key features (i.e., number of nodes, physical layer signals, medium access protocol (MAC) and routing protocols) are unknown. Because of the wireless medium, over-the-air signals captured by the sensors are mixed; therefore, blind source separation (BSS) and measurement association are used to estimate the number of sources and separate the traffic patterns. After the separation, we put together a set of methodologies for extracting useful features of the wireless network, i.e., its logical topology, the application-level traffic patterns generated by the nodes, and their position. The whole framework is validated on an ad-hoc wireless network accounting for MAC protocol, packet collisions, nodes mobility, the spatial density of sensors, and channel impairments, such as path-loss, shadowing, and noise. The numerical results obtained by extensive and exhaustive simulations show that the proposed framework is consistent and can achieve the required performance.
Resumo:
The fourth industrial revolution is paving the way for Industrial Internet of Things applications where industrial assets (e.g., robotic arms, valves, pistons) are equipped with a large number of wireless devices (i.e., microcontroller boards that embed sensors and actuators) to enable a plethora of new applications, such as analytics, diagnostics, monitoring, as well as supervisory, and safety control use-cases. Nevertheless, current wireless technologies, such as Wi-Fi, Bluetooth, and even private 5G networks, cannot fulfill all the requirements set up by the Industry 4.0 paradigm, thus opening up new 6G-oriented research trends, such as the use of THz frequencies. In light of the above, this thesis provides (i) a broad overview of the main use-cases, requirements, and key enabling wireless technologies foreseen by the fourth industrial revolution, and (ii) proposes innovative contributions, both theoretical and empirical, to enhance the performance of current and future wireless technologies at different levels of the protocol stack. In particular, at the physical layer, signal processing techniques are being exploited to analyze two multiplexing schemes, namely Affine Frequency Division Multiplexing and Orthogonal Chirp Division Multiplexing, which seem promising for high-frequency wireless communications. At the medium access layer, three protocols for intra-machine communications are proposed, where one is based on LoRa at 2.4 GHz and the others work in the THz band. Different scheduling algorithms for private industrial 5G networks are compared, and two main proposals are described, i.e., a decentralized scheme that leverages machine learning techniques to better address aperiodic traffic patterns, and a centralized contention-based design that serves a federated learning industrial application. Results are provided in terms of numerical evaluations, simulation results, and real-world experiments. Several improvements over the state-of-the-art were obtained, and the description of up-and-running testbeds demonstrates the feasibility of some of the theoretical concepts when considering a real industry plant.
Resumo:
Molecular characterization of Cryptosporidium spp.oocysts in clinical samples is useful for public health since it allows the study of sources of contamination as well as the transmission in different geographical regions. Although widely used in developed countries, in Brazil it is restricted to academic studies, mostly using commercial kits for the extraction of genomic DNA, or in collaboration with external reference centers, rendering the method expensive and limited. The study proposes the application of the modifications recently introduced in the method improving feasibility with lower cost. This method was efficient for clinical samples preserved at -20 °C for up to six years and the low number of oocysts may be overcomed by repetitions of extraction.
Resumo:
Functional magnetic resonance imaging (fMRI) has become an important tool in Neuroscience due to its noninvasive and high spatial resolution properties compared to other methods like PET or EEG. Characterization of the neural connectivity has been the aim of several cognitive researches, as the interactions among cortical areas lie at the heart of many brain dysfunctions and mental disorders. Several methods like correlation analysis, structural equation modeling, and dynamic causal models have been proposed to quantify connectivity strength. An important concept related to connectivity modeling is Granger causality, which is one of the most popular definitions for the measure of directional dependence between time series. In this article, we propose the application of the partial directed coherence (PDC) for the connectivity analysis of multisubject fMRI data using multivariate bootstrap. PDC is a frequency domain counterpart of Granger causality and has become a very prominent tool in EEG studies. The achieved frequency decomposition of connectivity is useful in separating interactions from neural modules from those originating in scanner noise, breath, and heart beating. Real fMRI dataset of six subjects executing a language processing protocol was used for the analysis of connectivity. Hum Brain Mapp 30:452-461, 2009. (C) 2007 Wiley-Liss, Inc.