193 resultados para Wheatley, Tyrone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Top Row: Cher Alaniz-Dowling, Katie Anibal, Tasneem Ba, Ethel Balaoing, Melissa Balok, Kristen Begin, Hillary bertke, Bess Bertolis, Lauren Blitz, roberta Bolio, Mariana Bordei, Christa Brock, Brianna Burg

Row 2: Kara Calhoun, Erin champieux, Sarah Marshall, Trevor Finton, Leovigildo Olivarez, Dena Fernandez, Daniel J. Tounsel, Emily Schmitt, Bridget Lufkin, Jessica Witt, Ryan VanLoocke, Quanda Chen, Vivian Cheng, Kelly Chiles

Row 3: Alicia Classens, Kristin coil, Michelle Crist, Jeremy Curtis, Shannon Dabao, Melanie Datu, Amanda Dean, Pina Desai, Theresa De Sitter, Kathryn DeWitt

Row 4: Elizabeth Dorda, Laura Dow, Jennifer Feighner, Elizabeth Findley, Katherine Fix, Lindsy Gasparovich, Michelle Gastman, Silvia Gonzafez, Cari Gray, Elizabeth Handzlik

Row 5: Lauren Hisey, Karen Hofmeister, Patricia M. Holda, Jennifer Hoskins, Emily Jacobson, Rita Jiddou, Elisabeth Jilek, Patrielle R. Johnson, Susanna Johnston, Kelly Kandt, Kelly Kazup, Sara Kile

Row 6: Lisa Kuzma, karen Kwapis, Tracey Lee, Patricia Coleman-Burns, Nola Pender, Carol Loveland-Cherry, Ada Sue Hinshaw, Beverly Jones, judith Lynch-Sauer, Jan L.Lee, Kimberly Little, Amber Manchester, Tracie Martinez

Row 7: Brenda K. Maynard, Molly McCormick, Christopher McWatters, Kirsten Meister, Dorota Meller, Kevin Michel, Emily Mulla, Geine Nolan, kelly Noyes, Brandi Otto, Alice Palmer, Tricia Pasaoa, Erika Pete, Rebekah Peterson, Menusa Petrovski

Row 8: Jacqueline pinson, Gretchen Pletz, Rachelle Ramos, Rochelle E. Ramos, Rebecca Roberts, Darice Rosario, Andrea Ryan, Clare Ryan, Jason schwartz, Andrea Sears, Sarah Skavnak, Elizabeth Slager, Sara Smith, Dana Sullivan

Row 9: Allison Sweet, Irie Thom, Charly R. Thomas, Michelle Thurman, Shamin Ullah, Kellie Vaidya, Cynthia Valerio, Erin Verkerke, Kristen Verska, Winderence Webb, Marisa Wheatley, Kristine Wiersma, Monique D. Williams, Katherine Willis, Jennifer Zelle

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reminiscences of royal and noble personages during the last and present centuries: v. 5, p. [341]-396.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] Union: Clogher/Counties: Monaghan & Tyrone -- [2] Union: Castlerea/Counties: Roscommon & Mayo -- [3] Union: Castletowndelvin/Counties: Meath & Westmeath -- [4] Union: Cootehill/County: Cavan -- [5] Union: Clifton/County: Galway, in which is included the Island of Inishbofin in the County of Mayo -- [6] Union: Claremorris/County: Mayo -- [7] Union: Cootehill/County: Managhan -- [8] Union: Clones/(Part of) County: Monaghan -- [9] Union: Ardee/Counties: Louth & Meath -- [10] Union: Bailieborough/County: Cavan -- [11] Union: Ballina/Counties: Mayo & Sligo -- [12] Union: Ballinasloe/County: Roscommon -- [13] Union: Ballinrobe/County: Mayo -- [14] Union: Ballymahon/Counties: Longford & Westmeath -- [15] Union: Ballymahon/County: Westmeath -- [16] Union: Ballyshannon/County: Donegal -- [17] Union: Ballyshannon/County: Leitrim -- [18] Union: Ballyvaghan/County: Clare -- [19] Union: Baltinglass/County: Wicklow -- [20] Unions: Bandon & Kinsale/County: Cork -- [21] Union: Bawnboy/County: Cavan -- [22] Union: Bawnboy/County: Leitrim -- [23] Union: Belmullet/County: Mayo -- [24] Union: Carrick-on-Shannon/County: Roscommon -- [25] Union: Carrickmacross/County: Monaghan -- [26] Union: Castlebar/County: Mayo -- [27] Union: Castleblayney (part of)/County: Monaghan -- [28] Union: Corrofin/County: Clare -- [29] Barony: Upper Deece/County: Meath -- [30] Barony: Cork/County: Cork -- [31] Barony: Coshmore & Coshbride/County: Waterford -- [32] Barony: Trough/County: Monaghan -- [33] Union: Donegal/County: Donegal -- [34] Union: Drogheda/Counties: Louth & Meath -- [35] Union: Dromore, West/County: Sligo -- [36] Union: Dunfanaghy/County: Donegal -- [37] Unions: Cahersiveen, Kenmare, and Killarney/County: Kerry -- [38] Barony: Dunkerron South/County: Kerry -- [39] Union: Dunshaughlin/County: Meath -- [40] Union: Edenderry/County: Meath -- [41] Union: Edenderry/County: Kildare -- [42] Union: Edenderry/King's County -- [43] Union: Enniskillen/County: Cavan -- [44] Union: Ennistimon/County: Clare -- [45] Barony: Glenahiry/County: Waterford -- [46] Union: Gort/Counties: Galway & Clare -- [47] Union: Granard/County: Longford -- [48] Union: Granard/County: Westmeath -- [49] Barony: Iffa & Offa West/County: Tipperary -- [50] Barony: Imokilly/County: Cork -- [51] Union: Kells/County: Meath -- [52] Barony: Kenry/County: Limerick -- [53] Barony: Kerrycurrihy/County: Cork -- [54] Barony: Kilculliheen/County: Waterford -- [55] Union: Killadysert/County: Clare -- [56] Union: Killala/County: Mayo -- [57] Union: Letterkenny/County: Donegal -- [58] Union: Limerick/County: Limerick -- [59] Union: Longford/County: Longford -- [60] Barony: Magunihy/County: Kerry -- [61] Unions: Mallow & Cork/County: Cork -- [62] Union: Manorhamilton/County: Leitrim -- [63] Union: Millford/County: Donegal -- [64] Union: Mountbellew/County: Galway -- [65] Union: Naas/County: Wicklow -- [66] Union: Navan/County: Meath -- [67] Union: Newport/County: Mayo -- [68] Union: Oldcastle/County: Meath -- [69] Barony: Upper Ormond/County: Tipperary, North Riding -- [70] Barony: Orrery & Kilmore/County: Cork -- [71] Union: Oughterard/ Counties: Galway & Mayo together with that portion of the Union of Ballinrobe in the County of Galway -- [72] Union: Portumna/County: Galway -- [73] Barony: Rathdown/County: Wicklow -- [74] Barony: Salt/County: Kildare -- [75] Barony: South Salt/County: Kildare -- [76] Union: Scarriff/Counties: Clare & Galway -- [77] Union: Shillelagh/County: Wicklow -- [78] Union: Stranorlar/County: Donegal -- [79] Union: Tobercurry/County: Sligo -- [80] Union: Trim/County: Meath -- [81] Barony: Trughanacmy/County: Kerry -- [82] Barony: Upperthird/County: Waterford -- [83] Union: Wexford/County: Wexford -- [84] Barony: Castleknock/County: Dublin -- [85] Barony: Balrothery, East/County: Dublin -- [86] Barony: Newcastle/County: Dublin -- [87] City of Dublin, North Dublin Union, Arran Quay Ward -- [88] City of Dublin, South Dublin Union, Fitzwilliam Ward -- [89] City of Dublin, North Dublin Union, Inns Quay Ward -- [90] City of Dublin, South Dublin Union, Mansion House Ward -- [91] City of Dublin, South Dublin Union, Merchants' Quay Ward -- [92] City of Dublin, North Dublin Union, Mountjoy Ward -- [93] City of Dublin, North Dublin Union, North Dock Ward -- [94] City of Dublin, North Dublin Union, North City Ward -- [95] City of Dublin, North Dublin Union, Rotundo Ward -- [96] City of Dublin, South Dublin Union, Royal Exchange Ward -- [97] City of Dublin, South Dublin Union, South City Ward -- [98] City of Dublin, South Dublin Union, South Dock Ward -- [99] City of Dublin, South Dublin Union, Trinity Ward -- [100] City of Dublin, South Dublin Union, Usher's Quay Ward -- [101] City of Dublin, South Dublin Union, Wood Quay Ward.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To find out the effect of early neurological consultation using a real time video link on the care of patients with neurological symptoms admitted to hospitals without neurologists on site. Methods: A cohort study was performed in two small rural hospitals: Tyrone County Hospital (TCH), Omagh, and Erne Hospital, Enniskillen. All patients over 12 years of age who had been admitted because of neurological symptoms, over a 24 week period, to either hospital were studied. Patients admitted to TCH, in addition to receiving usual care, were offered a neurological consultation with a neurologist 120 km away at the Neurology Department of the Royal Victoria Hospital, Belfast, using a real time video link. The main outcome measure was length of hospital stay; change of diagnosis, mortality at 3 months, inpatient investigation, and transfer rate and use of healthcare resources within 3 months of admission were also studied. Results: Hospital stay was significantly shorter for those admitted to TCH (hazard ratio 1.13; approximate 95% Cl 1.003 to 1.282; p = 0.045). No patients diagnosed by the neurologist using the video link subsequently had their diagnosis changed at follow up. There was no difference in overall mortality between the groups. There were no differences in the use of inpatient hospital resources and medical services in the follow up period between TCH and Erne patients. Conclusions: Early neurological assessment reduces hospital stay for patients with neurological conditions outside of neurological centres. This can be achieved safely at a distance using a real time video link.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rail corrugation consists of undesirable periodic fluctuations in wear on railway track and costs the railway industry substantially for it's removal by regrinding. Much research has been performed on this problem, particularly over the past two decades, however, a reliable cure remains elusive for wear-type corrugations. Recently the growth behaviour of wear-type rail corrugation-has been investigated using theoretical and experimental models as part of the RailCRC Project (#18). A critical part of this work is the tuning and validation of these models via an extensive field testing program. Rail corrugations have been monitored for 2 years on sites throughout Australia. Measured rail surface profiles are used to determine corrugation growth rates on each site. Growth rates and other characteristics are compared with theoretical predictions from a computer model for validation. The results from several pertinent sites are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In April 2007, the Biochemical Society held a meeting to compare and contrast ligand binding and activation of Family A and B GPCRs (G-protein-coupled receptors). Being the largest class, Family A GPCRs usually receive the most attention, although a previous Biochemical Society meeting has focused on Family B GPCRs. The aim of the present meeting was to bring researchers of both families together in order to identify commonalities between the two. The present article introduces the proceedings of the meeting, briefly commenting on the focus of each of the following articles. ©The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of a family B G-protein-coupled receptor, calcitonin receptor-like receptor (CLR), and the accessory protein receptor activity modifying protein 1. It couples to Gs, but it is not known which intracellular loops mediate this. We have identified the boundaries of this loop based on the relative position and length of the juxtamembrane transmembrane regions 3 and 4. The loop has been analyzed by systematic mutagenesis of all residues to alanine, measuring cAMP accumulation, CGRP affinity, and receptor expression. Unlike rhodopsin, ICL2 of the CGRP receptor plays a part in the conformational switch after agonist interaction. His-216 and Lys-227 were essential for a functional CGRP-induced cAMP response. The effect of (H216A)CLR is due to a disruption to the cell surface transport or surface stability of the mutant receptor. In contrast, (K227A)CLR had wild-type expression and agonist affinity, suggesting a direct disruption to the downstream signal transduction mechanism of the CGRP receptor. Modeling suggests that the loop undergoes a significant shift in position during receptor activation, exposing a potential G-protein binding pocket. Lys-227 changes position to point into the pocket, potentially allowing it to interact with bound G-proteins. His-216 occupies a position similar to that of Tyr-136 in bovine rhodopsin, part of the DRY motif of the latter receptor. This is the first comprehensive analysis of an entire intracellular loop within the calcitonin family of G-protein-coupled receptor. These data help to define the structural and functional characteristics of the CGRP-receptor and of family B G-protein-coupled receptors in general. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitonin receptor like-receptor is a family B G-protein coupled receptor (GPCR). It requires receptor activity modifying protein (RAMP) 1 to give a calcitonin gene-related peptide (CGRP) receptor. Little is known of how members of this receptor family function. Proline residues often form important kinks in alpha-helices. Therefore, all proline residues within the transmembrane helices of the receptor (Pro241, Pro244 in helix 4, Pro275 in helix 5, Pro321 and Pro331 in helix 6) were mutated to alanine. Pro241 Pro275, and Pro321 are highly conserved throughout all family B GPCRs. The binding of CGRP and its ability to stimulate cAMP production were investigated in mutant and wild-type receptors after transient transfection into COS-7 cells with RAMP1. The P321A mutation significantly decreased the pEC(50) for CGRP and reduced its affinity but did not change cell-surface expression. Antagonist binding [CGRP(8-37) and 1-piperidinecarboxamide N-[2-[[5amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3 5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quina zolinyl) (BIBN4096BS)] was little altered by the mutation. Adrenomedullin-mediated signaling was disrupted when P321A was coexpressed with RAMP1, RAMP2, or RAMP3. The P331A mutant produced a moderate reduction in CGRP binding and receptor activation. Mutation of the other residues had no effect on receptor function. Thus, Pro321 and Pro331 are required for agonist binding and receptor activation. Modeling suggested that Pro321 induces a bend in helix 6, bringing its C terminus near that of helix 3, as seen in many family A GPCRs. This is abolished in P321A. P321A-I325P predicted to restore this conformation, showed wild-type activation. Modeling can also rationalize the effects of transmembrane proline mutants previously reported for another family B GPCR, the VPAC(1) receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RAMPs (receptor activity-modifying proteins) are single-pass transmembrane proteins that associate with certain family-B GPCRs (G-protein-coupled receptors). Specifically for the CT (calcitonin) receptor-like receptor and the CT receptor, this results in profound changes in ligand binding and receptor pharmacology, allowing the generation of six distinct receptors with preferences for CGRP (CT gene-related peptide) adrenomedullin, amylin and CT. There are three RAMPs: RAMP1-RAMP3. The N-terminus appears to be the main determinant of receptor pharmacology whereas the transmembrane domain contributes to association of the RAMP with the GPCR. The N-terminus of all members of the RAMP family probably contains two disulphide bonds; a potential third disulphide is found in RAMP1 and RAMP3. The N-terminus appears to be in close proximity to the ligand and plays a key role in its binding, either directly or indirectly. BIBN4096BS, a CGRP antagonist, targets RAMP1 and this gives the compound very high selectivity for the human CGRP(1) receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The receptor for calcitonin-gene-related peptide (CGRP) is a heterodimer formed by calcitonin-receptor-like receptor (CRLR), a type II (family B) G-protein-coupled receptor, and receptor-activity-modifying protein 1 (RAMP1), a single-membrane-pass protein. It is likely that the first seven or so amino acids of CGRP (which form a disulphide-bonded loop) interact with the transmembrane domain of CRLR to cause receptor activation. The rest of the CGRP molecule falls into three domains. Residues 28-37 and 8-18 are normally required for high-affinity binding, while residues 19-27 form a hinge region. The 28-37 region is almost certainly in direct contact with the receptor; 8-18 may make additional receptor contacts or may stabilize an appropriate conformation of 28-37. It is likely that these regions of CGRP interact both with CRLR and with the extracellular domain of RAMP1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The muscarinic receptor from the cerebral cortex, heart, and lacrimal gland can be solubilized in the zwitterionic detergent 3-(3-cholamidopropyl)dimethylammonio-2-hydroxy-1-propane sulfonate (CHAPSO) with retention of high affinity [3H]N-methyls-copolamine binding. However, in this detergent there are significant differences in the binding properties of the receptors, compared with those observed in membranes and digitonin solution. Some agents retain a degree of selectivity. In the heart and cortex, agonists can bind with high affinity to a receptor-GTP-binding protein complex. A second, lower affinity, agonist binding state is also present, which resembles a class of sites seen in membranes but not in digitonin solution. The high affinity agonist binding state has been resolved from the lower affinity state on sucrose density gradient centrifugation. Hydrodynamic analysis suggests that the high affinity state is approximately 110,000 Da larger than the lower affinity state. The binding properties of the receptor in CHAPSO can be altered to those seen in digitonin by exchanging detergents after CHAPSO solubilization.