971 resultados para Werner, CossmannWerner, CossmannCossmannWerner
Resumo:
In this paper we propose a method for vision only topological simultaneous localisation and mapping (SLAM). Our approach does not use motion or odometric information but a sequence of colour histograms from visited places. In particular, we address the perceptual aliasing problem which occurs using external observations only in topological navigation. We propose a Bayesian inference method to incrementally build a topological map by inferring spatial relations from the sequence of observations while simultaneously estimating the robot's location. The algorithm aims to build a small map which is consistent with local adjacency information extracted from the sequence measurements. Local adjacency information is incorporated to disambiguate places which otherwise would appear to be the same. Experiments in an indoor environment show that the proposed technique is capable of dealing with perceptual aliasing using visual observations only and successfully performs topological SLAM.
Resumo:
Perceptual aliasing makes topological navigation a difficult task. In this paper we present a general approach for topological SLAM~(simultaneous localisation and mapping) which does not require motion or odometry information but only a sequence of noisy measurements from visited places. We propose a particle filtering technique for topological SLAM which relies on a method for disambiguating places which appear indistinguishable using neighbourhood information extracted from the sequence of observations. The algorithm aims to induce a small topological map which is consistent with the observations and simultaneously estimate the location of the robot. The proposed approach is evaluated using a data set of sonar measurements from an indoor environment which contains several similar places. It is demonstrated that our approach is capable of dealing with severe ambiguities and, and that it infers a small map in terms of vertices which is consistent with the sequence of observations.
Resumo:
We present a method for topological SLAM that specifically targets loop closing for edge-ordered graphs. Instead of using a heuristic approach to accept or reject loop closing, we propose a probabilistically grounded multi-hypothesis technique that relies on the incremental construction of a map/state hypothesis tree. Loop closing is introduced automatically within the tree expansion, and likely hypotheses are chosen based on their posterior probability after a sequence of sensor measurements. Careful pruning of the hypothesis tree keeps the growing number of hypotheses under control and a recursive formulation reduces storage and computational costs. Experiments are used to validate the approach.
Resumo:
Vendors provide reference process models as consolidated, off-the-shelf solutions to capture best practices in a given industry domain. Customers can then adapt these models to suit their specific requirements. Traditional process flexibility approaches facilitate this operation, but do not fully address it as they do not sufficiently take controlled change guided by vendors' reference models into account. This tension between the customer's freedom of adapting reference models, and the ability to incorporate with relatively low effort vendor-initiated reference model changes, thus needs to be carefully balanced. This paper introduces process extensibility as a new paradigm for customizing reference processes and managing their evolution over time. Process extensibility mandates a clear recognition of the different responsibilities and interests of reference model vendors and consumers, and is concerned with keeping the effort of customer-side reference model adaptations low while allowing sufficient room for model change.