930 resultados para Web map service
Resumo:
The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter.
Resumo:
Background The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. Methods A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. Results The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. Conclusion A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3D-fingerprint for proteins and implemented in a web-based database exploration tool comprising an interactive color-coded map of the PDB chemical space and a nearest neighbor search tool. The PDB-Explorer website is freely available at www.cheminfo.org/pdbexplorer and represents an unprecedented opportunity to interactively visualize and explore the structural diversity of the PDB.
Resumo:
This PhD thesis contributes to the problem of resource and service discovery in the context of the composable web. In the current web, mashup technologies allow developers reusing services and contents to build new web applications. However, developers face a problem of information flood when searching for appropriate services or resources for their combination. To contribute to overcoming this problem, a framework is defined for the discovery of services and resources. In this framework, three levels are defined for performing discovery at content, discovery and agente levels. The content level involves the information available in web resources. The web follows the Representational Stateless Transfer (REST) architectural style, in which resources are returned as representations from servers to clients. These representations usually employ the HyperText Markup Language (HTML), which, along with Content Style Sheets (CSS), describes the markup employed to render representations in a web browser. Although the use of SemanticWeb standards such as Resource Description Framework (RDF) make this architecture suitable for automatic processes to use the information present in web resources, these standards are too often not employed, so automation must rely on processing HTML. This process, often referred as Screen Scraping in the literature, is the content discovery according to the proposed framework. At this level, discovery rules indicate how the different pieces of data in resources’ representations are mapped onto semantic entities. By processing discovery rules on web resources, semantically described contents can be obtained out of them. The service level involves the operations that can be performed on the web. The current web allows users to perform different tasks such as search, blogging, e-commerce, or social networking. To describe the possible services in RESTful architectures, a high-level feature-oriented service methodology is proposed at this level. This lightweight description framework allows defining service discovery rules to identify operations in interactions with REST resources. The discovery is thus performed by applying discovery rules to contents discovered in REST interactions, in a novel process called service probing. Also, service discovery can be performed by modelling services as contents, i.e., by retrieving Application Programming Interface (API) documentation and API listings in service registries such as ProgrammableWeb. For this, a unified model for composable components in Mashup-Driven Development (MDD) has been defined after the analysis of service repositories from the web. The agent level involves the orchestration of the discovery of services and contents. At this level, agent rules allow to specify behaviours for crawling and executing services, which results in the fulfilment of a high-level goal. Agent rules are plans that allow introspecting the discovered data and services from the web and the knowledge present in service and content discovery rules to anticipate the contents and services to be found on specific resources from the web. By the definition of plans, an agent can be configured to target specific resources. The discovery framework has been evaluated on different scenarios, each one covering different levels of the framework. Contenidos a la Carta project deals with the mashing-up of news from electronic newspapers, and the framework was used for the discovery and extraction of pieces of news from the web. Similarly, in Resulta and VulneraNET projects the discovery of ideas and security knowledge in the web is covered, respectively. The service level is covered in the OMELETTE project, where mashup components such as services and widgets are discovered from component repositories from the web. The agent level is applied to the crawling of services and news in these scenarios, highlighting how the semantic description of rules and extracted data can provide complex behaviours and orchestrations of tasks in the web. The main contributions of the thesis are the unified framework for discovery, which allows configuring agents to perform automated tasks. Also, a scraping ontology has been defined for the construction of mappings for scraping web resources. A novel first-order logic rule induction algorithm is defined for the automated construction and maintenance of these mappings out of the visual information in web resources. Additionally, a common unified model for the discovery of services is defined, which allows sharing service descriptions. Future work comprises the further extension of service probing, resource ranking, the extension of the Scraping Ontology, extensions of the agent model, and contructing a base of discovery rules. Resumen La presente tesis doctoral contribuye al problema de descubrimiento de servicios y recursos en el contexto de la web combinable. En la web actual, las tecnologías de combinación de aplicaciones permiten a los desarrolladores reutilizar servicios y contenidos para construir nuevas aplicaciones web. Pese a todo, los desarrolladores afrontan un problema de saturación de información a la hora de buscar servicios o recursos apropiados para su combinación. Para contribuir a la solución de este problema, se propone un marco de trabajo para el descubrimiento de servicios y recursos. En este marco, se definen tres capas sobre las que se realiza descubrimiento a nivel de contenido, servicio y agente. El nivel de contenido involucra a la información disponible en recursos web. La web sigue el estilo arquitectónico Representational Stateless Transfer (REST), en el que los recursos son devueltos como representaciones por parte de los servidores a los clientes. Estas representaciones normalmente emplean el lenguaje de marcado HyperText Markup Language (HTML), que, unido al estándar Content Style Sheets (CSS), describe el marcado empleado para mostrar representaciones en un navegador web. Aunque el uso de estándares de la web semántica como Resource Description Framework (RDF) hace apta esta arquitectura para su uso por procesos automatizados, estos estándares no son empleados en muchas ocasiones, por lo que cualquier automatización debe basarse en el procesado del marcado HTML. Este proceso, normalmente conocido como Screen Scraping en la literatura, es el descubrimiento de contenidos en el marco de trabajo propuesto. En este nivel, un conjunto de reglas de descubrimiento indican cómo los diferentes datos en las representaciones de recursos se corresponden con entidades semánticas. Al procesar estas reglas sobre recursos web, pueden obtenerse contenidos descritos semánticamente. El nivel de servicio involucra las operaciones que pueden ser llevadas a cabo en la web. Actualmente, los usuarios de la web pueden realizar diversas tareas como búsqueda, blogging, comercio electrónico o redes sociales. Para describir los posibles servicios en arquitecturas REST, se propone en este nivel una metodología de alto nivel para descubrimiento de servicios orientada a funcionalidades. Este marco de descubrimiento ligero permite definir reglas de descubrimiento de servicios para identificar operaciones en interacciones con recursos REST. Este descubrimiento es por tanto llevado a cabo al aplicar las reglas de descubrimiento sobre contenidos descubiertos en interacciones REST, en un nuevo procedimiento llamado sondeo de servicios. Además, el descubrimiento de servicios puede ser llevado a cabo mediante el modelado de servicios como contenidos. Es decir, mediante la recuperación de documentación de Application Programming Interfaces (APIs) y listas de APIs en registros de servicios como ProgrammableWeb. Para ello, se ha definido un modelo unificado de componentes combinables para Mashup-Driven Development (MDD) tras el análisis de repositorios de servicios de la web. El nivel de agente involucra la orquestación del descubrimiento de servicios y contenidos. En este nivel, las reglas de nivel de agente permiten especificar comportamientos para el rastreo y ejecución de servicios, lo que permite la consecución de metas de mayor nivel. Las reglas de los agentes son planes que permiten la introspección sobre los datos y servicios descubiertos, así como sobre el conocimiento presente en las reglas de descubrimiento de servicios y contenidos para anticipar contenidos y servicios por encontrar en recursos específicos de la web. Mediante la definición de planes, un agente puede ser configurado para descubrir recursos específicos. El marco de descubrimiento ha sido evaluado sobre diferentes escenarios, cada uno cubriendo distintos niveles del marco. El proyecto Contenidos a la Carta trata de la combinación de noticias de periódicos digitales, y en él el framework se ha empleado para el descubrimiento y extracción de noticias de la web. De manera análoga, en los proyectos Resulta y VulneraNET se ha llevado a cabo un descubrimiento de ideas y de conocimientos de seguridad, respectivamente. El nivel de servicio se cubre en el proyecto OMELETTE, en el que componentes combinables como servicios y widgets se descubren en repositorios de componentes de la web. El nivel de agente se aplica al rastreo de servicios y noticias en estos escenarios, mostrando cómo la descripción semántica de reglas y datos extraídos permiten proporcionar comportamientos complejos y orquestaciones de tareas en la web. Las principales contribuciones de la tesis son el marco de trabajo unificado para descubrimiento, que permite configurar agentes para realizar tareas automatizadas. Además, una ontología de extracción ha sido definida para la construcción de correspondencias y extraer información de recursos web. Asimismo, un algoritmo para la inducción de reglas de lógica de primer orden se ha definido para la construcción y el mantenimiento de estas correspondencias a partir de la información visual de recursos web. Adicionalmente, se ha definido un modelo común y unificado para el descubrimiento de servicios que permite la compartición de descripciones de servicios. Como trabajos futuros se considera la extensión del sondeo de servicios, clasificación de recursos, extensión de la ontología de extracción y la construcción de una base de reglas de descubrimiento.
Resumo:
Background: Semantic Web technologies have been widely applied in the life sciences, for example by data providers such as OpenLifeData and through web services frameworks such as SADI. The recently reported OpenLifeData2SADI project offers access to the vast OpenLifeData data store through SADI services. Findings: This article describes how to merge data retrieved from OpenLifeData2SADI with other SADI services using the Galaxy bioinformatics analysis platform, thus making this semantic data more amenable to complex analyses. This is demonstrated using a working example, which is made distributable and reproducible through a Docker image that includes SADI tools, along with the data and workflows that constitute the demonstration. Conclusions: The combination of Galaxy and Docker offers a solution for faithfully reproducing and sharing complex data retrieval and analysis workflows based on the SADI Semantic web service design patterns.
MEDLINEplus: building and maintaining the National Library of Medicine's consumer health Web service
Resumo:
MEDLINEplus is a Web-based consumer health information resource, made available by the National Library of Medicine (NLM). MEDLINEplus has been designed to provide consumers with a well-organized, selective Web site facilitating access to reliable full-text health information. In addition to full-text resources, MEDLINEplus directs consumers to dictionaries, organizations, directories, libraries, and clearinghouses for answers to health questions. For each health topic, MEDLINEplus includes a preformulated MEDLINE search created by librarians. The site has been designed to match consumer language to medical terminology. NLM has used advances in database and Web technologies to build and maintain MEDLINEplus, allowing health sciences librarians to contribute remotely to the resource. This article describes the development and implementation of MEDLINEplus, its supporting technology, and plans for future development.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet II [of 10] covering a portion of the Yellow River (Huang He) region in eastern Qinghai Sheng and southern Gansu Sheng, China. The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet III [of 10] covering a portion of the Yellow River (Huang He) region in eastern Qinghai Sheng and southern Gansu Sheng, China. The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet IV [of 10] covering a portion of the Yellow River (Huang He) region in eastern Qinghai Sheng, China. The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet IX [of 10] covering a portion of the Yellow River (Huang He) region in southern Gansu Sheng and northwestern Sichuan Sheng, China, including parts of Baishui Jiang and Pai Ho (Gar He). The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet V [of 10] covering a portion of the Yellow River (Huang He) region in eastern Qinghai Sheng and southern Gansu Sheng, China. The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet VI [of 10] covering a portion of the Yellow River (Huang He) region in eastern Qinghai Sheng, southern Gansu Sheng, and northwestern Sichuan Sheng, China. The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet VII [of 10] covering a portion of the Yellow River (Huang He) region in southern Gansu Sheng and northwestern Sichuan Sheng, China, including parts of Bailong Jiang and Tao He. Sheet VII includes a separate title: 'Cho-ni Territory, Upper and Lower T'ieh-Pu country and route to Sung-P'an, J. F. Rock, 1925-1927.' The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet VIII [of 10] covering a portion of the Yellow River (Huang He) region in eastern Qinghai Sheng, southern Gansu Sheng, and northwestern Sichuan Sheng, China. The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet X [of 10] covering a portion of the Yellow River (Huang He) region in northeastern Sichuan Sheng, China, including the source of the Min Chiang (Min Jiang). The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.
Resumo:
This layer is part of a set of georeferenced, raster images of the manuscript, paper map set entitled: Ch'ing-Hai upper Yellow River expedition : Rock and Simpson, 1925-27, [cartography by J.F. Rock]. Scale 1:250,000. This layer image is of Sheet I [of 10] covering a portion of the Yellow River (Huang He) region in eastern Qinghai Sheng, China. The map set details the route and surrounding environs of the Arnold Arboretum's "Western China" expedition led by Joseph Rock, 1924-1927. The set covers a portion of the Yellow River (Huang He) region in south central China (Qinghai, Gansu, and Sichuan shengs (a portion of historic Tibet)). It shows features, labeled variously in English, Chinese, Wade-Giles transliteration, and Tibetan, including: rivers, streams, lakes, mountains, gorges, valleys, plateaus, plains, cities, towns, villages, provincial capitals, county seats, passes, monasteries, ruin sites, native tribe locations, and more. Relief is shown by hachures, spot heights, and landform drawings. The original manuscript map set is part of the Harvard College Library, Harvard Map Collection. "Joseph Rock traced his travels for the [Arnold] Arboretum's [Western China] 1924-1927 expedition in a colorful, hand-drawn map entitled 'Ch'ing-Hai upper Yellow River expedition.' The pen-and-ink drawing was made on ten sheets that when joined form a single, irregularly-shaped map, approximately six by eight feet in size. The individual sheets are numbered, using roman numerals; on sheet VII is a second title, 'Choni Territory, Upper and Lower T'ieh-Pu country and route to Sung-Pan, J. F. Rock, 1925-1927.' Topographical and other features are identified using a combination of English, Chinese characters, Wade-Giles transliterations and Tibetan script. Rock's attractive cursive style and use of hachures, spot heights, and landform drawings to depict relief add character to the map." -- Text from the Arnold Arboretum Web site.