949 resultados para Wearable, Internet-of-Things, Controllo accessi, Bluetooth, Apple Watch
Resumo:
A Internet das Coisas é um novo paradigma de comunicação que estende o mundo virtual (Internet) para o mundo real com a interface e interação entre objetos. Ela possuirá um grande número de dispositivos heteregôneos interconectados, que deverá gerar um grande volume de dados. Um dos importantes desafios para seu desenvolvimento é se guardar e processar esse grande volume de dados em aceitáveis intervalos de tempo. Esta pesquisa endereça esse desafio, com a introdução de serviços de análise e reconhecimento de padrões nas camadas inferiores do modelo de para Internet das Coisas, que procura reduzir o processamento nas camadas superiores. Na pesquisa foram analisados os modelos de referência para Internet das Coisas e plataformas para desenvolvimento de aplicações nesse contexto. A nova arquitetura de implementada estende o LinkSmart Middeware pela introdução de um módulo para reconhecimento de padrões, implementa algoritmos para estimação de valores, detecção de outliers e descoberta de grupos nos dados brutos, oriundos de origens de dados. O novo módulo foi integrado à plataforma para Big Data Hadoop e usa as implementações algorítmicas do framework Mahout. Este trabalho destaca a importância da comunicação cross layer integrada à essa nova arquitetura. Nos experimentos desenvolvidos na pesquisa foram utilizadas bases de dados reais, provenientes do projeto Smart Santander, de modo a validar da nova arquitetura de IoT integrada aos serviços de análise e reconhecimento de padrões e a comunicação cross-layer.
Resumo:
En la actualidad, existe un concepto que está cobrando especial relevancia, el cual es conocido como IoT (Internet of Things, Internet de las Cosas) [1]. En el IoT [2] se define la interconexión digital de objetos cotidianos con internet, esto significa que no sólo “los humanos” tenemos la capacidad de conectarnos a internet, sino que caminamos hacia una nueva era donde prácticamente cualquier cosa podría ser conectada a internet, desde un reloj (smartwatch), como tenemos en la actualidad, hasta una nevera, una persiana, una sartén, etc. En este proyecto se ha querido aplicar ciertas fases del IoT, para convertir una información ambiental poco sesgada, proporcionada por una pequeña estación meteorológica, en un valor adicional a la hora de tomar decisiones basadas en las variables ambientales, para determinar, según un proceso de aprendizaje automático, la sensación que una persona percibe en relación al tiempo meteorológico en un determinado momento. Para ello utilizamos una serie de sensores que se encargan de darnos la información ambiental necesaria (como la temperatura, humedad y presión atmosférica) una fuente de procesamiento como puede ser un micro-controlador, para después poder manejarla y procesarla en la nube, de forma remota, adquiriendo así el valor añadido que se espera en el IoT. Además, en este proyecto se aplican técnicas de Inteligencia Artificial para ayudar al usuario en esa toma de decisiones, mediante un proceso de entrenamiento previo, que permite obtener información relevante para aplicarla posteriormente en el contexto meteorológico mencionado. Para manejar todos estos conceptos y elementos, se hace uso de servicios Web, bases de datos, procesamiento y aprendizaje automático, integrando todos los servicios en una misma plataforma que facilite la comunicación de todos los elementos involucrados.
Resumo:
La Internet de las cosas (IoT, Internet of Things) es un paradigma emergente que pretende la interconexión de cualquier objeto susceptible de contar con una parte de electrónica, favorecido por la miniaturización de los componentes. El estado de desarrollo de la IoT hace que no haya ninguna propuesta firme para garantizar la seguridad y la comunicación extremo a extremo. En este artículo presentamos un trabajo en progreso hacia una aproximación tolerante a retrasos (DTN, Delay and Disruption Tolerant Networks) para la comunicación en el paradigma de la IoT y planteamos la adaptación de los mecanismo de seguridad existentes en DTN a la IoT.
Resumo:
The sustainability strategy in urban spaces arises from reflecting on how to achieve a more habitable city and is materialized in a series of sustainable transformations aimed at humanizing different environments so that they can be used and enjoyed by everyone without exception and regardless of their ability. Modern communication technologies allow new opportunities to analyze efficiency in the use of urban spaces from several points of view: adequacy of facilities, usability, and social integration capabilities. The research presented in this paper proposes a method to perform an analysis of movement accessibility in sustainable cities based on radio frequency technologies and the ubiquitous computing possibilities of the new Internet of Things paradigm. The proposal can be deployed in both indoor and outdoor environments to check specific locations of a city. Finally, a case study in a controlled context has been simulated to validate the proposal as a pre-deployment step in urban environments.
Resumo:
"Serial no. 108-35."
Resumo:
J.L., then a 25-year-old physiotherapist, became densely amnesic following herpes simplex encephalitis. She displayed severe retrograde amnesia, category-specific semantic memory loss, and a profound anterograde amnesia affecting both verbal and visual memory. Her working memory systems were relatively spared as were most of her cognitive problem-solving abilities, but her social functioning was grossly impaired. She was able to demonstrate several previously learned physiotherapy skills, but was unable to modify her application of these procedures in accordance with patient response. She showed no memory of theoretical or propositional knowledge, and could neither plan treatment or reason clinically. Three years later, J.L. had profound impairment of anterograde and retrograde declarative memory, with relative sparing of working memory for problem solving and long-term memory of procedural skills. The theoretical and practical implications of her amnesic syndrome are discussed.
Resumo:
Internet of Things (IoT) can be defined as a “network of networks” composed by billions of uniquely identified physical Smart Objects (SO), organized in an Internet-like structure. Smart Objects can be items equipped with sensors, consumer devices (e.g., smartphones, tablets, or wearable devices), and enterprise assets that are connected both to the Internet and to each others. The birth of the IoT, with its communications paradigms, can be considered as an enabling factor for the creation of the so-called Smart Cities. A Smart City uses Information and Communication Technologies (ICT) to enhance quality, performance and interactivity of urban services, ranging from traffic management and pollution monitoring to government services and energy management. This thesis is focused on multi-hop data dissemination within IoT and Smart Cities scenarios. The proposed multi-hop techniques, mostly based on probabilistic forwarding, have been used for different purposes: from the improvement of the performance of unicast protocols for Wireless Sensor Networks (WSNs) to the efficient data dissemination within Vehicular Ad-hoc NETworks (VANETs).
Resumo:
This article investigates the continuing influence of the past on contemporary politics in Poland and Ukraine by examining the impact of the vocal 'informed' segment of public opinion on mutual relations between the two countries. The section 'What history?' examines the question of exactly what understanding of history matters so much in Polish-Ukrainian relations. The following sections examine how history influences the present, what are the contours of public opinion on Polish-Ukrainian relations within each state, and what is the impact of shared history on the contemporary politics of Polish-Ukrainian relations. Finally, the article suggests a potentially generaliseable hypothesis for future research.
Resumo:
For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution.
Resumo:
Through numerous technological advances in recent years along with the popularization of computer devices, the company is moving towards a paradigm “always connected”. Computer networks are everywhere and the advent of IPv6 paves the way for the explosion of the Internet of Things. This concept enables the sharing of data between computing machines and objects of day-to-day. One of the areas placed under Internet of Things are the Vehicular Networks. However, the information generated individually for a vehicle has no large amount and does not contribute to an improvement in transit, once information has been isolated. This proposal presents the Infostructure, a system that has to facilitate the efforts and reduce costs for development of applications context-aware to high-level semantic for the scenario of Internet of Things, which allows you to manage, store and combine the data in order to generate broader context. To this end we present a reference architecture, which aims to show the major components of the Infostructure. Soon after a prototype is presented which is used to validate our work reaches the level of contextualization desired high level semantic as well as a performance evaluation, which aims to evaluate the behavior of the subsystem responsible for managing contextual information on a large amount of data. After statistical analysis is performed with the results obtained in the evaluation. Finally, the conclusions of the work and some problems such as no assurance as to the integrity of the sensory data coming Infostructure, and future work that takes into account the implementation of other modules so that we can conduct tests in real environments are presented.
Resumo:
Postprint
Resumo:
Major food adulteration and contamination events occur with alarming regularity and are known to be episodic, with the question being not if but when another large-scale food safety/integrity incident will occur. Indeed, the challenges of maintaining food security are now internationally recognised. The ever increasing scale and complexity of food supply networks can lead to them becoming significantly more vulnerable to fraud and contamination, and potentially dysfunctional. This can make the task of deciding which analytical methods are more suitable to collect and analyse (bio)chemical data within complex food supply chains, at targeted points of vulnerability, that much more challenging. It is evident that those working within and associated with the food industry are seeking rapid, user-friendly methods to detect food fraud and contamination, and rapid/high-throughput screening methods for the analysis of food in general. In addition to being robust and reproducible, these methods should be portable and ideally handheld and/or remote sensor devices, that can be taken to or be positioned on/at-line at points of vulnerability along complex food supply networks and require a minimum amount of background training to acquire information rich data rapidly (ergo point-and-shoot). Here we briefly discuss a range of spectrometry and spectroscopy based approaches, many of which are commercially available, as well as other methods currently under development. We discuss a future perspective of how this range of detection methods in the growing sensor portfolio, along with developments in computational and information sciences such as predictive computing and the Internet of Things, will together form systems- and technology-based approaches that significantly reduce the areas of vulnerability to food crime within food supply chains. As food fraud is a problem of systems and therefore requires systems level solutions and thinking.