916 resultados para Wavelet Transform


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital signal processing (DSP) aims to extract specific information from digital signals. Digital signals are, by definition, physical quantities represented by a sequence of discrete values and from these sequences it is possible to extract and analyze the desired information. The unevenly sampled data can not be properly analyzed using standard techniques of digital signal processing. This work aimed to adapt a technique of DSP, the multiresolution analysis, to analyze unevenly smapled data, to aid the studies in the CoRoT laboratory at UFRN. The process is based on re-indexing the wavelet transform to handle unevenly sampled data properly. The was efective presenting satisfactory results

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been an increasing tendency on the use of selective image compression, since several applications make use of digital images and the loss of information in certain regions is not allowed in some cases. However, there are applications in which these images are captured and stored automatically making it impossible to the user to select the regions of interest to be compressed in a lossless manner. A possible solution for this matter would be the automatic selection of these regions, a very difficult problem to solve in general cases. Nevertheless, it is possible to use intelligent techniques to detect these regions in specific cases. This work proposes a selective color image compression method in which regions of interest, previously chosen, are compressed in a lossless manner. This method uses the wavelet transform to decorrelate the pixels of the image, competitive neural network to make a vectorial quantization, mathematical morphology, and Huffman adaptive coding. There are two options for automatic detection in addition to the manual one: a method of texture segmentation, in which the highest frequency texture is selected to be the region of interest, and a new face detection method where the region of the face will be lossless compressed. The results show that both can be successfully used with the compression method, giving the map of the region of interest as an input

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main goals of CoRoT Natal Team is the determination of rotation period for thousand of stars, a fundamental parameter for the study of stellar evolutionary histories. In order to estimate the rotation period of stars and to understand the associated uncertainties resulting, for example, from discontinuities in the curves and (or) low signal-to-noise ratio, we have compared three different methods for light curves treatment. These methods were applied to many light curves with different characteristics. First, a Visual Analysis was undertaken for each light curve, giving a general perspective on the different phenomena reflected in the curves. The results obtained by this method regarding the rotation period of the star, the presence of spots, or the star nature (binary system or other) were then compared with those obtained by two accurate methods: the CLEANest method, based on the DCDFT (Date Compensated Discrete Fourier Transform), and the Wavelet method, based on the Wavelet Transform. Our results show that all three methods have similar levels of accuracy and can complement each other. Nevertheless, the Wavelet method gives more information about the star, from the wavelet map, showing the variations of frequencies over time in the signal. Finally, we discuss the limitations of these methods, the efficiency to give us informations about the star and the development of tools to integrate different methods into a single analysis

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, we study the application of spectral representations to the solution of problems in seismic exploration, the synthesis of fractal surfaces and the identification of correlations between one-dimensional signals. We apply a new approach, called Wavelet Coherency, to the study of stratigraphic correlation in well log signals, as an attempt to identify layers from the same geological formation, showing that the representation in wavelet space, with introduction of scale domain, can facilitate the process of comparing patterns in geophysical signals. We have introduced a new model for the generation of anisotropic fractional brownian surfaces based on curvelet transform, a new multiscale tool which can be seen as a generalization of the wavelet transform to include the direction component in multidimensional spaces. We have tested our model with a modified version of the Directional Average Method (DAM) to evaluate the anisotropy of fractional brownian surfaces. We also used the directional behavior of the curvelets to attack an important problem in seismic exploration: the atenuation of the ground roll, present in seismograms as a result of surface Rayleigh waves. The techniques employed are effective, leading to sparse representation of the signals, and, consequently, to good resolutions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neural networks and wavelet transform have been recently seen as attractive tools for developing eficient solutions for many real world problems in function approximation. Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. So, mathematical model is a very important tool to guarantee the development of the neural network area. In this article we will introduce one series of mathematical demonstrations that guarantee the wavelets properties for the PPS functions. As application, we will show the use of PPS-wavelets in pattern recognition problems of handwritten digit through function approximation techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of function approximation is motivated by the human limitation and inability to register and manipulate with exact precision the behavior variations of the physical nature of a phenomenon. These variations are referred to as signals or signal functions. Many real world problem can be formulated as function approximation problems and from the viewpoint of artificial neural networks these can be seen as the problem of searching for a mapping that establishes a relationship from an input space to an output space through a process of network learning. Several paradigms of artificial neural networks (ANN) exist. Here we will be investigated a comparative of the ANN study of RBF with radial Polynomial Power of Sigmoids (PPS) in function approximation problems. Radial PPS are functions generated by linear combination of powers of sigmoids functions. The main objective of this paper is to show the advantages of the use of the radial PPS functions in relationship traditional RBF, through adaptive training and ridge regression techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the study of some complex systems is done with use of two distinct procedures. In the first part, we have studied the usage of Wavelet transform on analysis and characterization of (multi)fractal time series. We have test the reliability of Wavelet Transform Modulus Maxima method (WTMM) in respect to the multifractal formalism, trough the calculation of the singularity spectrum of time series whose fractality is well known a priori. Next, we have use the Wavelet Transform Modulus Maxima method to study the fractality of lungs crackles sounds, a biological time series. Since the crackles sounds are due to the opening of a pulmonary airway bronchi, bronchioles and alveoli which was initially closed, we can get information on the phenomenon of the airway opening cascade of the whole lung. Once this phenomenon is associated with the pulmonar tree architecture, which displays fractal geometry, the analysis and fractal characterization of this noise may provide us with important parameters for comparison between healthy lungs and those affected by disorders that affect the geometry of the tree lung, such as the obstructive and parenchymal degenerative diseases, which occurs, for example, in pulmonary emphysema. In the second part, we study a site percolation model for square lattices, where the percolating cluster grows governed by a control rule, corresponding to a method of automatic search. In this model of percolation, which have characteristics of self-organized criticality, the method does not use the automated search on Leaths algorithm. It uses the following control rule: pt+1 = pt + k(Rc − Rt), where p is the probability of percolation, k is a kinetic parameter where 0 < k < 1 and R is the fraction of percolating finite square lattices with side L, LxL. This rule provides a time series corresponding to the dynamical evolution of the system, in particular the likelihood of percolation p. We proceed an analysis of scaling of the signal obtained in this way. The model used here enables the study of the automatic search method used for site percolation in square lattices, evaluating the dynamics of their parameters when the system goes to the critical point. It shows that the scaling of , the time elapsed until the system reaches the critical point, and tcor, the time required for the system loses its correlations, are both inversely proportional to k, the kinetic parameter of the control rule. We verify yet that the system has two different time scales after: one in which the system shows noise of type 1 f , indicating to be strongly correlated. Another in which it shows white noise, indicating that the correlation is lost. For large intervals of time the dynamics of the system shows ergodicity

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional mathematical tools, like Fourier Analysis, have proven to be efficient when analyzing steady-state distortions; however, the growing utilization of electronically controlled loads and the generation of a new dynamics in industrial environments signals have suggested the need of a powerful tool to perform the analysis of non-stationary distortions, overcoming limitations of frequency techniques. Wavelet Theory provides a new approach to harmonic analysis, focusing the decomposition of a signal into non-sinusoidal components, which are translated and scaled in time, generating a time-frequency basis. The correct choice of the waveshape to be used in decomposition is very important and discussed in this work. A brief theoretical introduction on Wavelet Transform is presented and some cases (practical and simulated) are discussed. Distortions commonly found in industrial environments, such as the current waveform of a Switched-Mode Power Supply and the input phase voltage waveform of motor fed by inverter are analyzed using Wavelet Theory. Applications such as extracting the fundamental frequency of a non-sinusoidal current signal, or using the ability of compact representation to detect non-repetitive disturbances are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wavelets are being extensively used in Geodetic applications. In this paper, the Multi-Resolution Analysis (MRA) using wavelets is applied to pseudorange and carrier phase GPS double differences (DDs) in order to reduce multipath effects. The wavelets were already applied to GPS carrier phase DDs, but some questions remain: How good can be the results, and are all multipath effects reduced? The answers to these questions are discussed in this paper. Thus, the wavelet transform is used to decompose the DD signals, splitting them in lower resolution components. After the decomposition process, the wavelet shrinkage is performed by thresholding to eliminate the components relative to multipath effects. Then, the DD observation can be reconstructed. This new DD signal is used to perform the baseline processing. The daily multipath repeatability was verified. With the application of the proposed approach, the results showed that the reliability of the ambiguity resolution and accuracy of the results improved when compared with the standard procedure. Furthermore, the method showed to be very efficient computationally, because, it is not noticed, at practical level, difference in the time span between the processing with and without application of the proposed method. However, only the high frequency multipath was eliminated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integer carrier phase ambiguity resolution is the key to rapid and high-precision global navigation satellite system (GNSS) positioning and navigation. As important as the integer ambiguity estimation, it is the validation of the solution, because, even when one uses an optimal, or close to optimal, integer ambiguity estimator, unacceptable integer solution can still be obtained. This can happen, for example, when the data are degraded by multipath effects, which affect the real-valued float ambiguity solution, conducting to an incorrect integer (fixed) ambiguity solution. Thus, it is important to use a statistic test that has a correct theoretical and probabilistic base, which has became possible by using the Ratio Test Integer Aperture (RTIA) estimator. The properties and underlying concept of this statistic test are shortly described. An experiment was performed using data with and without multipath. Reflector objects were placed surrounding the receiver antenna aiming to cause multipath. A method based on multiresolution analysis by wavelet transform is used to reduce the multipath of the GPS double difference (DDs) observations. So, the objective of this paper is to compare the ambiguity resolution and validation using data from these two situations: data with multipath and with multipath reduced by wavelets. Additionally, the accuracy of the estimated coordinates is also assessed by comparing with the ground truth coordinates, which were estimated using data without multipath effects. The success and fail probabilities of the RTIA were, in general, coherent and showed the efficiency and the reliability of this statistic test. After multipath mitigation, ambiguity resolution becomes more reliable and the coordinates more precise. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The swallowing disturbers are defined as oropharyngeal dysphagia when present specifies signals and symptoms that are characterized for alterations in any phases of swallowing. Early diagnosis is crucial for the prognosis of patients with dysphagia and the potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. This study proposes a new framework for oropharyngeal dysphagia identification, having two main contributions: a new set of features extract from swallowing signal by discrete wavelet transform and the dysphagia classification by a novel pattern classifier called OPF. We also employed the well known SVM algorithm in the dysphagia identification task, for comparison purposes. We performed the experiments in two sub-signals: the first was the moment of the maximal peak (MP) of the signal and the second is the swallowing apnea period (SAP). The OPF final accuracy obtained were 85.2% and 80.2% for the analyzed signals MP and SAP, respectively, outperforming the SVM results. ©2008 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-frequency multipath is still one of the major challenges for high precision GPS relative positioning. In kinematic applications, mainly, due to geometry changes, the low-frequency multipath is difficult to be removed or modeled. Spectral analysis has a powerful technique to analyze this kind of non-stationary signals: the wavelet transform. However, some processes and specific ways of processing are necessary to work together in order to detect and efficiently mitigate low-frequency multipath. In this paper, these processes are discussed. Some experiments were carried out in a kinematic mode with a controlled and known vehicle movement. The data were collected in the presence of a reflector surface placed close to the vehicle to cause, mainly, low-frequency multipath. From theanalyses realized, the results in terms of double difference residuals and statistical tests showed that the proposed methodology is very efficient to detect and mitigate low-frequency multipath effects. © 2008 IEEE.