965 resultados para Water resources development--New Jersey--Maps.
Resumo:
In this reservoir, the parameters being assessed are very important in the aspect of fish culture. These parameters are: physical parameters which includes temperature (O), Transparency (M).Chemical parameters include: Dissolve oxygen (mg/l) pH concentration and the Biological Parameters which include phytoplankton and zooplankton. The phytoplankton and zooplankton identification and estimation were carried out in the NIFFR Limnology Laboratory, (Green House), New Bussa. Each identified zooplankton and phytoplankton species was placed according to its major group e.g. zooplankton was grouped into three families, Roifera, Cladocera and Copepods. During this study period it was observed that copepods have the highest total number of zooplankton both beside the poultry and monk (station 'A'&'B'). Water temperature of station 'A' (beside the poultry house) ranges from 27 C-29, 5 c also same station 'B' (near the monk). Dissolve oxygen station 'A' range from 6.30mg/l-7.40mg/l while that of station 'B' ranges from 6.20mg/7.50mg/l, turbidity reading of station A'ranges from 0.19m-0.3m while station 'B' ranges from 0.22m-0.37m. The last parameter, which is pH concentration, in both stations 8.2 was observed this is an indication that the pH was constant. According to some literature review all the water parameter figures obtained were good for fish culture
Resumo:
Age, size, abundance, and birthdate distributions were compared for larval Atlantic menhaden (Brevoortia tyrannus) collected weekly during their estuarine recruitment seasons in 1989–90, 1990–91, and 1992–93 in lower estuaries near Beaufort, North Carolina, and Tuckerton, New Jersey, to determine the source of these larvae. Larval recruitment in New Jersey extended for 9 months beginning in October but was discontinuous and was punctuated by periods of no catch that were associated with low water temperatures. In North Carolina, recruitment was continuous for 5–6 months beginning in November. Total yearly larval density in North Carolina was higher (15–39×) than in New Jersey for each of the 3 years. Larvae collected in North Carolina generally grew faster than larvae collected in New Jersey and were, on average, older and larger. Birthdate distributions (back-calculated from sagittal otolith ages) overlapped between sites and included many larvae that were spawned in winter. Early spawned (through October) larvae caught in the New Jersey estuary were probably spawned off New Jersey. Larvae spawned later (November–April) and collected in the same estuary were probably from south of Cape Hatteras because only there are winter water temperatures warm enough (≥16°C) to allow spawning and larval development. The percentage contribution of these late-spawned larvae from south of Cape Hatteras were an important, but variable fraction (10% in 1992–93 to 87% in 1989–90) of the total number of larvae recruited to this New Jersey estuary. Thus, this study provides evidence that some B. tyrannus spawned south of Cape Hatteras may reach New Jersey estuarine nurseries.
Resumo:
Effective management is a key to ensuring the current and future sustainability of land, water and energy resources. Identifying the complexities of such management is not an easy task, especially since past studies have focussed on studying these resources in isolation from one another. However, with rapid population growth and an increase in the awareness of a potential change in climatic conditions that may affect the demand for and supply of food, water and energy, there has been a growing need to integrate the planning decisions relating to these three resources. The paper shows the visualisation of linked resources by drawing a set of interconnected Sankey diagrams for energy, water and land. These track the changes from basic resource (e.g. coal, surface water, groundwater and cropland) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). The focus here is on the water analysis aspects of the tool, which uses California as a detailed case study. The movement of water in California is traced from its source to its services by mapping the different transformations of water from when it becomes available, through its use, to further treatment, to final sinks (including recycling and reuse of that resource). The connections that water has with energy and land resources for the state of California are highlighted. This includes the amount of energy used to pump and treat water, and the amount of water used for energy production and the land resources which create a water demand to produce crops for food. By mapping water in this way, policy-makers and resource managers can more easily understand the competing uses of water (environment, agriculture and urban use) through the identification of the services it delivers (e.g. sanitation, agriculture, landscaping), the potential opportunities for improving the management of the resource (e.g. building new desalination plants, reducing the demand for services), and the connections with other resources which are often overlooked in a traditional sector-based management strategy.
Resumo:
The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.
Resumo:
This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24%, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16%. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.
Resumo:
Incluye Bibliografía
Resumo:
The aim of this project was to evaluate the present state and possible changes of water resources in Lake Ladoga and its drainage basin for the purposes of the sustainable development of North-Western Russia and Finland. The group assessed the state of the water resources in quantitative and qualitative terms, taking the system of sustainable development indicators suggested by the International Commission on Sustainable Development as a basis for assessment. These include pressure indicators (annual withdrawals of ground and surface water, domestic consumption of water per capita), state indicators (ground water reserves, concentration of faecalcoliform in fresh water, biochemical oxygen demand), and response indicators (waste-water treatment coverage, density of hydrological networks). The group proposed the following additional indicators and indices for the complex evaluation of the qualitative and quantitative state of the region's water resources: * Pressure indicators (external load, coefficient of anthropogenic pressure) * State indicators and indices (concentrations of chemicals in water, concentrations of chemicals in sediments, index of water pollution, critical load, critical limit, internal load, load/critical load, concentration/critical limit, internal load/external load, trophic state, biotic indicators and indices) * Response indicators (discharges of pure water, polluted water, partly treated water and the ratio between these, trans-boundary fluxes of pollutants, state expenditure on environmental protection, human life span) The assessment considered both temporal and spatial aspects and produced a regional classification of the area according to the index of water pollution. Mathematical models were developed to describe and forecast the processes under way in the lake and can be used to estimate the influence of climatic changes on the hydrological regime, as well as the influence of anthropogenic load on the trophic state of Lake Ladoga and to assess the consequences of accidental discharges of polluting admixtures of different kinds into the lake. The results of this mathematical modelling may be of use to decision-makers responsible for the management of water resources.
Resumo:
SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan of the city of Philadelphia and Camden, drawn and engraved by W.H. Gamble. It was published by Wm. M. Bradley & Bro. in 1886. Scale [ca.1:25,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane Coordinate System NAD83 (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, selected public buildings, city wards, parks, cemeteries, ferry routes, wharves, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan of the city of Philadelphia and Camden, drawn and engraved by W.H. Gamble. It was published by S. Augustus Mitchell Jr. in 1874. Scale [ca.1:25,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane Coordinate System NAD83 (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, selected public buildings, city wards, parks, cemeteries, wharves, ferry routes, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of Philadelphia, Camden and vicinity : compiled from city plans & personal surveys, engraved by Albert Volk. It was published by Elvino V. Smith in 1921. Scale 1:35,000. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane Coordinate System NAD83 (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, county, township, and city ward boundaries, parks, cemeteries, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a digitized geo-referenced raster image of a 1797 map of New Jersey drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.