941 resultados para Water reduction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hulun Lake, China’s fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (- 364±64 mm/yr, ~70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ~ net 210 Mm3/yr (equivalent to ~ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The valuation of ecosystem services such as drinking water provision is of growing national and international interest. The cost of drinking water provision is directly linked to the quality of its raw water input, which is itself affected by upstream land use patterns. This analysis employs the benefit transfer method to quantify the economic benefits of water quality improvements for drinking water production in the Neuse River Basin in North Carolina. Two benefit transfer approaches, value transfer and function transfer, are implemented by combining the results of four previously published studies with data collected from eight Neuse Basin water treatment plants. The mean net present value of the cost reduction estimates for the entire Neuse Basin ranged from $2.7 million to $16.6 million for a 30% improvement in water quality over a 30-year period. The value-transfer approach tended to produce larger expected benefits than the function-transfer approach, but both approaches produced similar results despite the differences in their methodologies, time frames, study sites, and assumptions. © 2010 ASCE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An industrial electrolysis cell used to produce primary aluminium is sensitive to waves at the interface of liquid aluminium and electrolyte. The interface waves are similar to stratified sea layers [1], but the penetrating electric current and the associated magnetic field are intricately involved in the oscillation process, and the observed wave frequencies are shifted from the purely hydrodynamic ones [2]. The interface stability problem is of great practical importance because the electrolytic aluminium production is a major electrical energy consumer, and it is related to environmental pollution rate. The stability analysis was started in [3] and a short summary of the main developments is given in [2]. Important aspects of the multiple mode interaction have been introduced in [4], and a widely used linear friction law first applied in [5]. In [6] a systematic perturbation expansion is developed for the fluid dynamics and electric current problems permitting reduction of the three-dimensional problem to a two dimensional one. The procedure is more generally known as “shallow water approximation” which can be extended for the case of weakly non-linear and dispersive waves. The Boussinesq formulation permits to generalise the problem for non-unidirectionally propagating waves accounting for side walls and for a two fluid layer interface [1]. Attempts to extend the electrolytic cell wave modelling to the weakly nonlinear case have started in [7] where the basic equations are derived, including the nonlinearity and linear dispersion terms. An alternative approach for the nonlinear numerical simulation for an electrolysis cell wave evolution is attempted in [8 and references there], yet, omitting the dispersion terms and without a proper account for the dissipation, the model can predict unstable waves growth only. The present paper contains a generalisation of the previous non linear wave equations [7] by accounting for the turbulent horizontal circulation flows in the two fluid layers. The inclusion of the turbulence model is essential in order to explain the small amplitude self-sustained oscillations of the liquid metal surface observed in real cells, known as “MHD noise”. The fluid dynamic model is coupled to the extended electromagnetic simulation including not only the fluid layers, but the whole bus bar circuit and the ferromagnetic effects [9].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water retention and transport in soils is dependent upon the surface tension of the aqueous phase. Surfactants present in aqueous solution reduce the surface tension of aqueous phase. In soil–water systems, this can result in water drainage and reductions in field capacity and hydraulic conductivity. In this investigation, the surface tension of surfactant solutions mixed with soil—in a constant fixed ratio—was measured as a function of surfactant concentration. Two anionic surfactants were used: sodium dodecyl sulphate and sodium bis (2-ethylhexyl) sulfosuccinate. Two soils were also used—a clay soil and a sandy soil. The key observation made by this investigation was that the addition of soil to the surfactant solution provided a further component of surface tension reduction. Neither soil sample reduced the surface tension of water when surfactant was absent from the aqueous phase, though both soils released soil organic matter at low surfactant concentrations as shown by measurement of the chemical oxygen demand of the supernatant solutions. Furthermore, both surfactants were shown to be weakly adsorbed by soil as shown by the use of a methylene blue assay. It is therefore proposed that the additional reduction in surface tension arises from synergistic interactions between the surfactants and dissolved soil organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maritime transport and shipping are impacted negatively by biofouling, which can result in increased fuel consumption. Thus, costs for fouling reduction can be considered an investment to reduce fuel consumption. Anti-fouling measures also reduce the rate of introduction of non-indigenous species (NIS). Further mitigation measures to reduce the transport of NIS within ballast water and sediments impose additional costs. The estimated operational cost of NIS mitigation measures may represent between 1.6% and 4% of the annual operational cost for a ship operating on European seas, with the higher proportional costs in small ships. However, fouling by NIS may affect fuel consumption more than fouling by native species due to differences in species’ life-history traits and their resistance to antifouling coatings and pollution. Therefore, it is possible that the cost of NIS mitigation measures could be smaller than the cost from higher fuel consumption arising from fouling by NIS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high level of escapes from Atlantic salmon farms, up to two million fishes per year in the North Atlantic, has raised concern about the potential impact on wild populations. We report on a twogeneration experiment examining the estimated lifetime successes, relative to wild natives, of farm, F1 and F2 hybrids and BC1 backcrosses to wild and farm salmon. Offspring of farm and hybrids (i.e. all F1 , F2 and BC1 groups) showed reduced survival compared with wild salmon but grew faster as juveniles and displaced wild parr, which as a group were significantly smaller. Where suitable habitat for these emigrant parr is absent, this competition would result in reduced wild smolt production. In the experimental conditions, where emigrants survived downstream, the relative estimated lifetime success ranged from 2% (farm) to 89% (BC1 wild) of that of wild salmon, indicating additive genetic variation for survival . Wild salmon primarily returned to fresh water after one sea winter (1SW) but farm and hybrids produced proportionately more 2SW salmon. However, lower overall survival means that this would result in reduced recruitment despite increased 2SW fecundity. We thus demonstrate that interaction of farm with wild salmon results in lowered fitness, with repeated escapes causing cumulative fitness depression and potentially an extinction vortex in vulnerable populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined experimental and theoretical investigation of the nature of the active form of gold in oxide-supported gold catalysts for the water gas shift reaction has been performed. In situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) experiments have shown that in the fresh catalysts the gold is in the form of highly dispersed gold ions. However, under water gas shift reaction conditions, even at temperatures as low as 100 degrees C, the evidence from EXAFS and XANES is only 14 consistent with rapid, and essentially complete, reduction of the gold to form metallic clusters containing about 50 atoms. The presence of Au-Ce distances in the EXAFS spectra, and the fact that about 15% of the gold atoms can be reoxidized after exposure to air at 150 degrees C, is indicative of a close interaction between a fraction (ca. 15%) of the gold atoms and the oxide support. Density functional theory (DFT) calculations are entirely consistent with this model and suggest that an important aspect of the active and stable form of gold under water gas shift reaction conditions is the location of a partially oxidized gold (Audelta+) species at a cerium cation vacancy in the surface of the oxide support. It is found that even with a low loading gold catalysts (0.2%) the fraction of ionic gold under water gas shift conditions is below the limit of detection by XANES (<5%). It is concluded that under water gas shift reaction conditions the active form of gold comprises small metallic gold clusters in intimate contact with the oxide support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of water depth on the performance of a small surging wave energy converter (WEC) is investigated analytically, numerically and experimentally. It is shown that although the average annual incident wave power is significantly reduced by water depth, a large proportion of this reduction is due to the dissipation of highly energetic, but largely unexploitable seas. It is also shown that the power capture is related more closely to incident wave force than incident wave power. Experimental results demonstrate that both the surge wave force and power capture of a flap-type WEC increase in shallow water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present report investigates the role of formate species as potential reaction intermediates for the WGS reaction (CO + H2O -> CO2 + H-2) over a Pt-CeO2 catalyst. A combination of operando techniques, i.e., in situ diffuse reflectance FT-IR (DRIFT) spectroscopy and mass spectrometry (MS) during steady-state isotopic transient kinetic analysis (SSITKA), was used to relate the exchange of the reaction product CO2 to that of surface formate species. The data presented here suggest that a switchover from a non-formate to a formate-based mechanism could take place over a very narrow temperature range (as low as 60 K) over our Pt-CeO2 catalyst. This observation clearly stresses the need to avoid extrapolating conclusions to the case of results obtained under even slightly different experimental conditions. The occurrence of a low-temperature mechanism, possibly redox or Mars van Krevelen-like, that deactivates above 473 K because of ceria over-reduction is suggested as a possible explanation for the switchover, similarly to the case of the CO-NO reaction over Cu, I'd and Rh-CeZrOx (see Kaspar and co-workers [1-3]). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water, one of the most popular species in our planet, can play a catalytic role in many reactions, including reactions in heterogeneous catalysis. In a recent experimental work, Bergeld, Kasemo, and Chakarov demonstrated that water is able to promote CO oxidation under low temperatures (similar to200 K). In this study, we choose CO oxidation on Pt(111) in the presence of water as a model system to address the catalytic role of water for surface reactions in general using density functional theory. Many elementary steps possibly involved in the CO oxidation on Pt(111) at low temperatures have been investigated. We find the following. First, in the presence of water, the CO oxidation barrier is reduced to 0.33 eV (without water the barrier is 0.80 eV). This barrier reduction is mainly due to the H-bonding between the H in the H2O and the O at the transition state (TS), which stabilizes the TS. Second, CO can readily react with OH with a barrier of 0.44 eV, while COOH dissociation to produce CO2 is not easy (the barrier is 1.02 eV). Third, in the H2O+OH mixed phase, CO can be easily converted into CO2. It occurs through two steps: CO reacts with OH, forming COOH; and COOH transfers the H to a nearby H2O and, at the same time, an H in the H2O transfers to a OH, leading to CO2 formation. The reaction barrier of this process is 0.60 eV under CO coverage of 1/6 ML and 0.33 eV under CO coverage of 1/3 ML. The mechanism of CO oxidation at low temperatures is discussed. On the basis of our calculations, we propose that the water promotion effect can in general be divided into two classes: (i) By H-bonding between the H of H2O and an electron negative species such as the O in the reaction of CO+O+H2O-->CO2+H2O, H2O can stabilize the TS of the reaction and hence reduce the barrier. (ii) H2O first dissociates into H and OH and then OH or H participates directly in the reaction to induce new reaction mechanism with more favorable routes, in which OH or H can act as an intermediate. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concrete placed under water should be proportioned to flow readily into place with minimum materials separation. Unlike concrete cast for deep tremie seals, the use of concrete in repairs often necessitates some free fall of the mixture through water. Such placement conditions lead to greater risk of water erosion and segregation, and should be addressed in proportioning highly flowable underwater concrete. This paper evaluates the effect of free-fall height (FFH) of concrete through water on resulting in-place properties. Concrete was cast in blocks measuring 0.54 x 0.44 x 1 m with the initial FFH in water ranging between 0.25 and 0.60 m. In-place compressive and splitting tensile strengths, unit weight, and depth of washed-out and sedimentation materials were determined. In total, 24 highly flowable mixtures with slump flows greater than 500 mm were investigated. The evaluated mixtures were prepared with various hydraulic binders, including conventional Type 10 cement, a binary mixture with 10% of silica fume (SF), and a ternary binder incorporating 20% of fly ash (FA) and 6% of SF. The mixtures were proportioned with water-binder ratios (w/b) ranging between 0.41 and 0.47. Test results show that the increase of FFH of fresh concrete in water can greatly decrease the residual strength and significantly increase the thickness of washed out and sedimentation materials. The incorporation of 10% of SF, or 20% of FA and 6% of SF, and the reduction of the w/b from 0.47 to 0.41 can, however, lead to a significant increase in washout resistance and residual strength. A relationship between residual strength and the coupled factor of free-fall drop of concrete in water and washout resistance is established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is growing interest in the application of electrode-based measurements for monitoring microbial processes in the Earth using biogeophysical methods. In this study, reactive electrode measurements were combined to electrical geophysical measurements during microbial sulfate reduction occurring in a column of silica beads saturated with natural river water. Electrodic potential (EP), self potential (SP) and complex conductivity signals were recorded using a dual electrode design (Ag/AgCl metal as sensing/EP electrode, Ag/AgCl metal in KCl gel as reference/SP electrode). Open-circuit potentials, representing the tendency for electrochemical reactions to occur on the electrode surfaces, were recorded between sensing/EP electrode and reference/SP electrode and showed significant spatiotemporal variability associated with microbial activity. The dual electrode design isolates the microbial driven sulfide reactions to the sensing electrode and permits removal of any SP signal from the EP measurement. Based on the known sensitivity of a Ag electrode to dissolved sulfide, we interpret EP signals exceeding 550 mV recorded in this experiment in terms of bisulfide (HS-) concentration near multiple sensing electrodes. Complex conductivity measurements capture an imaginary conductivity (s?) signal interpreted as the response of microbial growth and biomass formation in the column. Our results suggest that the implementation of multipurpose electrodes, combining reactive measurements with electrical geophysical measurements, could improve efforts to monitor microbial processes in the Earth using electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durability of concrete can be improved by applying surface treatments. Pore-lining treatments prevent or delay the ingress of water-borne salts while allowing vapour transfer across the concrete surface. The most common pore-liners are silanes and siloxanes; both reported to give good results. One area of concern, however, is variability in effectiveness of the treatment. This variability may be due to inconsistent coverage or extreme drying conditions. With care these can be controlled but another source of variability which is difficult to control is the moisture profile within the concrete at the time of application of the treatment. This paper describes a test programme to assess the sensitivity of three different surface treatments to moisture gradient in the concrete at the time of application of treatment. The test programme included durability parameters such as chloride ingress, corrosion due to chloride ingress, freeze-thaw salt scaling resistance. Water absorption (sorptivity) of treated and untreated concretes was also measured with a non-distructive test technique called Autoclam with the aim of determining if the Autoclam sorptivity test can be used to assess the effectiveness of surface treatments. Using these results it is possible to avoid, or allow for, moisture conditions which would adversely affect the success of a pore-liner. However there are advantages in specifying an expected performance of the surface treatment rather than specifying the conditions in which it must be placed. By this method a treatment would have to achieve a specified value of sorptivity or a specified reduction in sorptivity. Failure to do so would be an objective basis on which to make a decision of whether or not to reject the treatment. The Autoclam is a device capable of measuring sorptivity values down to the range typical of surface treated concrete. The paper assesses if the device can be used to discriminate between acceptable treatment and unsatisfactory treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the addition of water on the absorption of carbon dioxide by the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide was studied experimentally by measuring the low-pressure carbon dioxide solubility and the viscosity of the liquid solvent at temperatures from 303 to 323 K. Water is only partially miscible with the ionic liquid up to a mole fraction of 0.302 at 293 K, 0.321 at 303 K and 0.381 at 323 K. It was observed that the solubility of carbon dioxide decreases with the quantity of water from a mole fraction of 2.63 × 10-2 for the pure ionic liquid at 303.4 K to a value of 1.88 × 10-2, a reduction of 30% of the solubility, for a mole fraction of water of 0.28. The viscosity of the liquid solvent also decreases, up to 40% at 303 K, from 28.6 mPa s for the pure ionic liquid to 16.4 mPa s for a water mole fraction of 0.302.