966 resultados para Water degradation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Late-season grapefruits (Citrus paradisi Macf. cv. Marsh seedless) were dipped in water at 50°C for 3 min with and without 200 ppm imazalil (IMZ) or 1000 ppm IMZ at 19°C and were subsequently stored at 7°C and 90-95% relative humidity (RH) for 11 weeks plus one week at 21°C and approximately 75% RH to simulate a marketing period (SMP). Residue concentrations in fruit after treatment with 200 ppm IMZ at 50°C were 3.46 ppm, about twice the level (1.80 ppm) found in fruit treated with 1000 ppm IMZ at 19°C. Fungicide degradation rates during storage showed similar patterns resulting in an approximately 50% decrease. Both fungicide treatments significantly reduced decay and chilling injury (CI) during storage and SMP. Hot water reduced CI and decay but not as effectively as the IMZ treatments. Soluble solids concentrations were not affected by treatments, IMZ treatments resulted in significantly lower values of titratable acidity and higher concentrations of ethanol in the juice after SMP. Weight loss was significantly higher in fruit dipped in water at 50°C after SMP. No visible damage occurred to the fruit as a result of any of the treatments.
Resumo:
The objective of this work was to evaluate rates for applications of water treatment sludge (WTS) as a nutrient source for grasses and leguminous plants cropped in a soil degraded by tin mining in the Amazon Region (Natural Forest of Jamari, Rondonia State, Brazil). The treatments consisted of three rates of nitrogen supplied by WTS (100, 150 and 200 mg kg -1 soil), five combinations of plants, two controls (absolute control, without fertilization; and chemical control, soil+lime+chemical fertilizers). WTS modified the contents of macro and micronutrients in the degraded soil, but it was not, as used in the present study, sufficient for the rehabilitation of the degraded area. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Due to growing urbanization and industrialization, the environment is suffering from pollution of rivers, degradation of soils and deteriorated air quality. Quality indices appear to be useful to evaluate the conditions of these media. The aim of this study was the development of a water quality index using a fuzzy inference system, since such an approach has proved advantageous in addressing problems that are subjective by nature or for which the data are uncertain. The methodology employed was based on this inference system, and considered the nine water quality parameters employed by CETESB (Companhia de Tecnologia de Saneamento Ambiental, São Paulo, Brazil) to evaluate water quality. After assessment of the data using the index, a comparison was made with the WQI (Water Quality Index), which is used for the monitoring of various water bodies, including in the study region. The results obtained using the index developed on the basis of fuzzy inference were found to be more useful than those derived from the method currently used by CETESB, since losses and/or omissions concerning individual parameters were minimized. © 2010 IEEE.
Resumo:
Reactive species generated by Fe0 oxidation promoted by O2 (catalyzed or not by ligands) are able to degrade contaminant compounds like the herbicide 2,4-dichlorophenoxyacetic acid. The degradation of 2,4-D was influenced by the concentrations of zero valent iron (ZVI) and different ligands, as well as by pH. In the absence of ligands, the highest 2,4-D degradation rate was obtained at pH 3, while the highest percentage degradation (50%) was achieved at pH 5 after 120 min of reaction. Among the ligands studied (DTPA, EDTA, glycine, oxalate, and citrate), only ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) significantly enhanced oxidation of 2,4-D. This increase in oxidation was observed at all pH values tested (including neutral to alkaline conditions), indicating the feasibility of the technique for treatment of contaminated water. In the presence of EDTA, the oxidation rate was greater at pH 3 than at pH 5 or 7. Increasing the EDTA concentration increased the rate and percentage of 2,4-D degradation, however increasing the Fe0 concentration resulted in the opposite behavior. It was found that degradation of EDTA and 2,4-D occurred simultaneously, and that the new methodology avoided any 2,4-D removal by adsorption/coprecipitation. © 2013 Elsevier Ltd.
Resumo:
In this study, nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by the melt intercalation method and the obtained samples were characterized by transmission electron microscopy (TEM). Since composting is an important proposal to the final disposal of biopolymers, the influence of clays on the hydrolytic degradation process of PLA was evaluated by visual analysis and monitoring of molecular weight after periods of 15 and 30 days of degradation in compost. After degradation of the materials in composting environment, the evaluation of cytotoxic, genotoxic and mutagenic effects of compost aqueous extract was carried out using a bioassay with Allium cepa as test organism. The TEM micrographs permitted the observation of different levels of dispersion, including exfoliated regions. In the evaluation of hydrolytic degradation it was noted that the presence of organoclays can decrease the rate of degradation possibly due to the barrier effect of clay layers and/or the higher degree of crystallinity in the nanocomposite samples. Nevertheless, even in the case of nanocomposites, the molecular weight reduction was significant, indicating that the composting process is favorable to the chain scission of PLA in studied materials. In the analysis performed by the bioassay using A. cepa as test organism, it was found that after degradation of the PLA and its nanocomposites the aqueous extract of compost samples induced a decreasing in the mitotic index and an increasing in the induction of chromosomal abnormalities. These results were statistically significant in relation to the negative control (distilled water). By comparing the results obtained for the nanocomposites in relative to pure polymer, there were no statistically significant differences. The types of the observed chromosomal aberrations indicated a possible genotoxic effect of the materials, which may be related to an aneugenic action of PLA degradation products. © 2013 Springer Science+Business Media New York.
Resumo:
Nontuberculous mycobacteria are resistant to conventional water treatment; indeed, they have been recovered from a wide variety of environmental sources. Here, we applied the photoelectrocatalytic technique using a Ti/TiO2-Ag photoanode to inactivate mycobacteria. For a mycobacteria population of 5 × 108 CFU mL-1, we achieved 99.9 and 99.8% inactivation of Mycobacterium kansasii and Mycobacterium avium with rate constant of 6.2 × 10-3 and 4.2 × 10-3 min-1, respectively, after 240 min. We compared the proposed method with the photolytic and photocatalytic methods. Using a mycobacteria population of 7.5 × 104 CFU mL-1, the proposed Ti/TiO2-Ag photoanode elicited total mycobacteria inactivation within 3 min of treatment; the presence of Ag nanoparticles in the electrode provided 1.5 larger degradation rate constant as compared with the Ti/TiO2 anode (1.75 × 10-2 for M. kansassi and 1.98 × 10-2 for M. avium). We monitored the degradation of the metabolites released during cellular lysis by TOC removal, sugar release, chromatography, and mass spectrometry measurements; photoelectrocatalysis and Ti/TiO2-Ag photoanodes furnished the best results. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to determine the no-observable-adverse-effect concentration (NOAEC) for trichlorfon, an antiparasitic agent used in aquaculture, in Piractus mesopotamicus (pacu) using acetylcholinesterase (AChE) activity as an end point. Fish were exposed 24 h/d for 15 d to different concentrations of trichlorfon in tanks of water for which a curve of dissipation was previously determined. Analysis of trichlorfon in water and fish plasma using gas chromatography with electron capture detection (GC-ECD) enabled measurement of limit of detection (LOD) and limit of quantification (LOQ), respectively, to be 3 and 10 ppb. Thirty-six hours after trichlorfon dilution in water, the concentration was below the LOD, and data showed that plasma concentrations did not exceed the LOQ. Apart from the 6.25 g/L, all concentrations of trichlorfon significantly inhibited plasma and brain AChE activity compared to controls. The AChE activity levels returned to control values in 7 d. These data may be useful to determine the concentration of trichlorfon that destroys parasites without producing adverse effects in fish.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The synthetic intermaxillary elastic emerged as an alternative for clinical use in patients with latex sensitivity. However, there are disagreements about this elastic protocol use according to the force degradation. The aim of this study was to evaluate, in vitro, the forces generated by latex and synthetic elastics over time. Material and methods: Sample size of 840 elastics were used (420 latex and 420 synthetic), delivering medium strength (Dental Morelli®) with internal diameter of 1/8", 3/16", 1/4" and 5/16". The elastics were randomly divided into 7 groups according to the time of the force measuring and immersed into distilled water at 37°C. To measure the force in each group, the elastics were stretched in six progressive increases of 100% of its internal diameter with the aid of a testing machine Emic and measured up to 72 hours. Data were analyzed with SPSS 16.0, using one-way analysis of variance (ANOVA). Results: Immediate force level of synthetic elastics was statistically higher than latex elastics in all strains, for the same size. However, the latex elastics mean forceslightly decreased over time, while the synthetic elastics presented an abrupt decrease. Conclusion: In view of these findings, Sudanese homemade alcoholic beverages cause oral epithelial atypical changes, which lead to oral precancerous and cancerous lesions. OEFC is a useful procedure for detection and assessment of oral ET.
Resumo:
Introduction and Objective: The synthetic intermaxillary elastic emerged as an alternative for clinical use in patients with latex sensitivity. However, there are disagreements about this elastic protocol use according to the force degradation. The aim of this study was to evaluate, in vitro, the forces generated by latex and synthetic elastics over time. Material and methods: Sample size of 840 elastics were used (420 latex and 420 synthetic), delivering medium strength (Dental Morelli®) with internal diameter of 1/8”, 3/16”, 1/4” and 5/16”. The elastics were randomly divided into 7 groups according to the time of the force measuring and immersed into distilled water at 37°C. To measure the force in each group, the elastics were stretched in six progressive increases of 100% of its internal diameter with the aid of a testing machine Emic and measured up to 72 hours. Data were analyzed with SPSS 16.0, using one-way analysis of variance (ANOVA). Results: Immediate force level of synthetic elastics was statistically higher than latex elastics in all strains, for the same size. However, the latex elastics mean force slightly decreased over time, while the synthetic elastics presented an abrupt decrease. Conclusion: The synthetic elastic presented severe force degradation, jeopardizing the cost-benefit ratio, which indicates a higher replacement frequency. The latex elastic showed better mechanical performance in comparison to synthetic ones.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)