984 resultados para Warm Asphalt Binder,SBS,Dynamic Shear Rheometer,Rotational Viscometer,Equiviscosità,RTFOT,FTIR
Resumo:
Discarded tires have become a major disposal problem in the U.S. Different techniques of recycling these discarded tires have been tried. The state of Iowa is currently evaluating the use of discarded tires ground into crumb rubber and blending it with asphalt to make asphalt rubber cement (ARC}. This was the sixth project this process has been used in. This project is located on US 169 from the east junction of IA 175 west and north to US 20. Only the binder course was placed this year with the surface course to be let at a later date. There are four test sections, two sections with conventional mixtures and two with ARC mixtures.
Resumo:
In an effort to control fugitive dust on a gravel surfaced roadway in Boone County, a cationic asphalt emulsion was blended with warm water and applied with an asphalt distributor. The test included various application procedures. After visual observations, it was concluded that this procedure utilizing a dilute asphalt emulsion was not an effective method of dust control.
Resumo:
The Iowa Department of Transportation is evaluating the use of ground recycled crumb rubber from discarded tires in asphalt rubber cement. There were four projects completed during 1991 and another one constructed in 1992. This project is located on IA 140 north of Kingsley in Plymouth County. The project contains one section with reacted asphalt rubber cement (ARC) used in both binder and surface courses, one with reacted ARC used in the surface course and a conventional binder course, and a conventional mix control section. The reacted rubber binder course was placed on October 17, 1991 and the reacted rubber surface course was placed on October 17, 18, and 19. Inclement weather caused a slight delay in placing or constructing the surface. There was a minor problem with shoving and cracking of the binder course. The construction went well otherwise. Information included in this report consists of test results, construction reports, and cost comparisons.
Resumo:
The Iowa Department of Transportation is evaluating the use of discarded tires in asphalt rubber cement. There have been five projects completed in Iowa. This project is located on US 151 north of Cascade to US 61 in Dubuque. One section consists of an asphalt rubber cement surface and a conventional binder and two sections contain both asphalt rubber cement surface and binder. The control section of conventional asphalt was completed this spring. Information included in this report consists of test results, construction reports, and cost comparisons.
Resumo:
The disposal of discarded tires has become a major problem. Different methods of recycling have been researched. Currently, Iowa is researching the use of ground recycled crumb rubber from discarded tires in asphalt rubber cement. Six projects have been completed in Iowa using asphalt rubber cement. This project is located on IA 947 (University Avenue) in Cedar Falls/Waterloo. The project contains one section with asphalt rubber cement used in both the binder and surface courses and one section using asphalt rubber cement in the surface course with a conventional binder. There are two control sections where conventional asphalt pavement was placed.
Resumo:
Reflective cracking in hot mix asphalt (HMA) overlays has been a common cause of poor pavement performance in Iowa for many years. Reflective cracks commonly occur in HMA overlays when deteriorated portland cement concrete is paved over with HMA. This results in HMA pavement surfaces with poor ride quality and increased transportation maintenance costs. To delay the formation of cracks in HMA overlays, the Iowa Department of Transportation (Iowa DOT) has begun to implement a crack-relief interlayer mix design specification. The crack-relief interlayer is an asphalt-rich, highly flexible HMA that can resist cracking in high strain loading conditions. In this project, the field performance of an HMA overlay using a one inch interlayer was compared to a conventional HMA overlay without an interlayer. Both test sections were constructed on US 169 in Adel, Iowa as part of an Iowa DOT overlay project. The laboratory performance of the interlayer mix design was assessed for resistance to cracking from repeated strains by using the four-point bending beam apparatus. An HMA using a highly polymer modified binder was designed and shown to meet the laboratory performance test criteria. The field performance of the overlay with the interlayer exceeded the performance of the conventional overlay that did not have the interlayer. After one winter season, 29 percent less reflective cracking was measured in the pavement section with the interlayer than the pavement section without the interlayer. The level of cracking severity was also reduced by using the interlayer in the overlay.
Resumo:
The influence of second phases (e.g., pyroxenes) on olivine grain size was studied by quantitative microfabric analyses of samples of the Hilti massif mantle shear zone (Semail ophiolite, Oman). The microstructures range from porphyroclastic tectonites to ultramylonites, from outside to the center of the shear zone. Starting at conditions of ridge-related flow, they formed under continuous cooling leading to progressive strain localization. The dependence of the average olivine grain size on the second-phase content can be split into a second-phase controlled and a dynamic recrystallization-controlled field. In the former, the olivine grain size is related to the ratio between the second-phase grain size and volume fraction (Zener parameter). In the latter, dynamic recrystallization manifested by a balance between grain growth and grain size reduction processes yields a stable olivine grain size. In both fields the average olivine and second-phase grain size decreases with decreasing temperature. Combining the microstructural information with deformation mechanism maps suggests that the porphyroclastic tectonites (similar to 1100 degrees C) and mylonites (similar to 800 degrees C) formed under the predominance of dislocation creep. Since olivine-rich layers are intercalated with layer parallel, polymineralic bands in the mylonites, nearly equiviscous conditions can be assumed. In the ultramylonites, diffusion creep represents the major deformation mechanism in the polymineralic layers. It is this switch in deformation mechanism from dislocation creep to diffusion creep that forces strain to localize in the fine-grained polymineralic domains at low temperatures (<similar to 700 degrees C), underlining the role of the second phases on strain localization in cooling mantle rocks.
Resumo:
Discarded tires have become a major disposal problem in the U.S. Different techniques of recycling these discarded tires have been tried. The state of Iowa has evaluated the use of discarded tires ground into crumb rubber and blending it with asphalt to make asphalt rubber cement (ARC). This was the sixth project using this process. The project is located on US 169 from the east junction of IA 175 west and north to US 20. Only the binder course was placed during this research with the surface course to be let at a later date. There were four test sections, two sections with conventional mixtures and two with ARC mixtures. There were no significant differences in placement or performance between the two mix types. The cost of the ARC mixture was significantly higher.
Resumo:
Asphalt is used as a binder for thin maintenance surface (TMS) applications because of two key properties, it is waterproof and it adheres relatively well to the aggregate. Since asphalt is too stiff at room temperature to apply to the road surface, it is usually applied as either a cutback asphalt or an asphalt emulsion. The asphalt emulsions can be further divided into high float emulsions, cationic emulsions or polymer-modified binders, which are emulsions with polymers added to them. These types of binders are discussed further below.
Resumo:
The main objective of this research is to examine the effects that different methods of RAP stockpile fractionation would have on the volumetric mix design properties for high-RAP content surface mixes, with the goal of meeting all specified criteria for standard HMA mix designs. To determine the distribution of fine aggregates and binder in RAP stockpile, RAP materials were divided by each sieve size. The composition of RAP materials retained on each sieve was analyzed to determine the optimum fractionation method. Fractionation methods were designed to separate the stockpile at a specified sieve size to control the amount of fine RAP materials which contain higher amounts of fine aggregates and dust contents. These fine RAP materials were used in reduced proportions or completely eliminated, thereby decreasing the amount of fine aggregate materials introduced to the mix. Mix designs were performed using RAP materials from four different stockpiles and the two fractionated methods were used with high-RAP contents up to 50% by virgin binder replacement. By using a fractionation method, a mix with up to 50% RAP was successfully designed while meeting all Superpave criteria and asphalt film thickness requirement by controlling the dust content from RAP stockpiles.
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
Resumo:
Discarded tires present major disposal and environmental problems. The recycling of those tires in asphalt cement concrete is what this research deals with. The Iowa DOT and the University of Northern Iowa (UNI) are evaluating the use of discarded tires in asphalt rubber cement and rubber chip mixes. The project is located on US 61 between Blue Grass and Muscatine in Muscatine County. It contains four rubberized asphalt sections and control sections. One section consists of reacted rubber asphalt cement used in both the binder and surface courses, and one section, both lanes, contains a rubber chip mix. The reacted rubber asphalt and the rubber chip mixes were laid in July 1991. The project construction went well with a few problems of shoving and cracking of the mat. This report contains information about procedures and tests that were run and those that will be run. It also has a cost comparison since this is a major concern with the use of asphalt rubber. Evaluation of this project will continue for five years. Three more research projects containing rubberized asphalt were constructed in 1991 and another is to be constructed in 1992.
Resumo:
The disposal of discarded tires has become a major problem. Different methods of recycling have been researched. Currently, Iowa is researching the use of ground recycled crumb rubber from discarded tires in asphalt rubber cement. Six projects have been completed in Iowa using asphalt rubber cement. This project is located on IA 947 (University Avenue) in Cedar Falls/Waterloo. The project contains one section with asphalt rubber cement used in both the binder and surface courses and one section using asphalt rubber cement in the surface course with a conventional binder. There are two control sections where conventional asphalt pavement was placed.
Resumo:
In this paper, a new two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation is proposed. The nonlinear elastic forces of the beam element are obtained using a continuum mechanics approach without employing a local element coordinate system. In this study, linear polynomials are used to interpolate both the transverse and longitudinal components of the displacement. This is different from other absolute nodal-coordinate-based beam elements where cubic polynomials are used in the longitudinal direction. The accompanying defects of the phenomenon known as shear locking are avoided through the adoption of selective integration within the numerical integration method. The proposed element is verified using several numerical examples, and the results are compared to analytical solutions and the results for an existing shear deformable beam element. It is shown that by using the proposed element, accurate linear and nonlinear static deformations, as well as realistic dynamic behavior, can be achieved with a smaller computational effort than by using existing shear deformable two-dimensional beam elements.
Resumo:
The active magnetic bearings have recently been intensively developed because of noncontact support having several advantages compared to conventional bearings. Due to improved materials, strategies of control, and electrical components, the performance and reliability of the active magnetic bearings are improving. However, additional bearings, retainer bearings, still have a vital role in the applications of the active magnetic bearings. The most crucial moment when the retainer bearings are needed is when the rotor drops from the active magnetic bearings on the retainer bearings due to component or power failure. Without appropriate knowledge of the retainer bearings, there is a chance that an active magnetic bearing supported rotor system will be fatal in a drop-down situation. This study introduces a detailed simulation model of a rotor system in order to describe a rotor drop-down situation on the retainer bearings. The introduced simulation model couples a finite element model with component mode synthesis and detailed bearing models. In this study, electrical components and electromechanical forces are not in the focus. The research looks at the theoretical background of the finite element method with component mode synthesis that can be used in the dynamic analysis of flexible rotors. The retainer bearings are described by using two ball bearing models, which include damping and stiffness properties, oil film, inertia of rolling elements and friction between races and rolling elements. Thefirst bearing model assumes that the cage of the bearing is ideal and that the cage holds the balls in their predefined positions precisely. The second bearing model is an extension of the first model and describes the behavior of the cageless bearing. In the bearing model, each ball is described by using two degrees of freedom. The models introduced in this study are verified with a corresponding actual structure. By using verified bearing models, the effects of the parameters of the rotor system onits dynamics during emergency stops are examined. As shown in this study, the misalignment of the retainer bearings has a significant influence on the behavior of the rotor system in a drop-down situation. In this study, a stability map of the rotor system as a function of rotational speed of the rotor and the misalignment of the retainer bearings is presented. In addition, the effects of parameters of the simulation procedure and the rotor system on the dynamics of system are studied.