967 resultados para Walls.
Resumo:
Ground improvement techniques can be adopted to prevent existing buildings built on liquefiable soils sustaining damage in future earthquakes. Impermeable geomembrane containment walls may be an economic and successful technique but their design and performance are currently not well defined or well understood for this application. This paper describes centrifuge testing carried out to investigate the performance of such containment walls as a liquefaction remediation method for a single degree of freedom frame structure. The results were compared with those from similar centrifuge testing carried out with the same structure founded on unimproved sand, to assess the effectiveness of the remediation method. It was found that the geomembrane containment walls tested were effective at reducing structural settlement and did not significantly increase the accelerations transmitted to the structure. Structural settlements were reduced primarily by mobilising hoop stress and preventing lateral soil movement. By preventing surface drainage, a decrease in the volume change of the foundation sand was also observed. In addition, the impermeability of the walls may be important as this prevented rapid migration of pore water fromthe free field to the foundation region.
Resumo:
Cement-bentonite (CB) cutoff walls have long been used to control ground water flow and contaminant migration at polluted sites. Hydraulic conductivity and unconfined compressive strength are two short-term properties often used by industry and owners in CB specification and are important parameters discussed in this paper. For polluted sites, long-term compatibility is also an important issue. These properties are coupled to a number of external factors including the mix design, construction sequence, presence/absence of contaminants at the site. Additional short-term properties for engineering assessment include the stressstrain characteristics in both drained and undrained shear in both with and without confinement as well as one-dimensional consolidation properties. Long term CB properties are affected by aging, reaction chemistry, drying, in situ stress state, and interaction with the polluted environment. © 2013 Taylor & Francis Group.
Resumo:
The discusser read with interest the paper by Diakoumi & Powrie (2013) proposing an interesting method for the analysis of propped flexible retaining walls based on the mobilisation of active and passive pressures on the wall due to movement of wall segments. An assumed deformation mechanism within the soil is used to estimate the strain associated with rotation of a particular wall segment. This mechanism is then superposed for each wall segment, the resulting earth pressures are calculated; the equality between the wall bending moments implied by equilibrium and those required to achieve the appropriate bending of the wall is used to calculate the rotation of each segment. Although the method of analysis provides insight into the conservatism of conventional design calculations for different wall flexibilities, there are two aspects of the paper which provoke further discussion.
Resumo:
This review paper summarises briefly some important achievements of our recent research on the synthesis and novel applications of nanostructure ZnO such as honeycomb shaped 3-D (dimension) nano random-walls. A chemical reaction/vapour transportation deposition technique was employed to fabricate this structure on ZnO/SiO2/Si substrate without any catalyst and additive in a simple tube furnace to aim the low-cost and high qualified samples. Random laser action with strong coherent feedback at the wavelength between 375 nm and 395 nm has been firstly observed under 355 nm optical excitation with threshold pumping intensity of 0.38 MW/cm(2).
Resumo:
River training walls have been built at scores of locations along the NSW coast and their impacts on shoreline change are still not fully understood. In this study, the Brunswick River entrance and adjacent beaches are selected for examination of the impact of the construction of major training walls. Thirteen sets of aerial photographs taken between 1947 and 1994 are used in a CIS approach to accurately determine tire shoreline Position, beach contours and sand volumes, and their changes in both time and space, and then to assess the contribution of both tire structures and natural hydrodynamic conditions to large scale (years-decades and kilometres) beach changes. The impact of the training walls can be divided into four stages: natural conditions prior to their construction (pre 1959), major downdrift erosion and updrift accretion during and. following the construction of the walls in 1959 similar to 1962 and 1966. diminishing impact of the walls between 1966 and 1987, and finally no apparent impact between 1987 similar to 1994. The impact extends horizontally about 8 km updrift and 17 km downdrift, and temporally up to 25 years..
Resumo:
The micromagnetic structure and energy of 180° domain walls spanning laminar crystals of iron having (100) or (110) surfaces and ranging in thickness from 145 to 580 nm have been investigated by numerical integration of the Landau-Lifshitz-Gilbert equation. Stable equilibrium structures with two flux symmetries were obtained for both crystal orientations at all thicknesses studied.
Resumo:
The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid-liquid interfaces. Attention is focused on structural, electrostatic, and dynamical properties, which are compared with those of the nonpolarized fluid. It is found that the relaxation of the electrostatic potential, after switching the electric field off, occurs in two stages. A first, subpicosecond process accounts for 80% of the decay and is followed by a second subdiffusive process with a time constant of 8 ps. Diffusion is not involved in the relaxation, which is mostly driven by small anion translations. The relaxation of the polarization in the confined system is discussed in terms of the spectrum of charge density fluctuations in the bulk.
Resumo:
The interaction of an ultraintense laser pulse with a conical target is studied by means of numerical particle-in-cell simulations in the context of fast ignition. The divergence of the fast electron beam generated at the tip of the cone has been shown to be a crucial parameter for the efficient coupling of the ignition laser pulse to the precompressed fusion pellet. In this paper, we demonstrate that a focused hot electron beam is produced at the cone tip, provided that electron currents flowing along the surfaces of the cone sidewalls are efficiently generated. The influence of various interaction parameters over the formation of these wall currents is investigated. It is found that the strength of the electron flows is enhanced for high laser intensities, low density targets, and steep density gradients inside the cone. The hot electron energy distribution obeys a power law for energies of up to a few MeV, with the addition of a high-energy Maxwellian tail.
Resumo:
Current trends in the development of microstructured reactors with thin catalytic films (from 100 nm up to several microns) that have self-assembled nanostructures are discussed. A major technique that is used to prepare such films is sol-gel processing. This involves depositing a complex fluid on a microstructured substrate by dip, spin, or spray coating, followed by surfactant removal to form the porous nanostructures. A novel methodology has been developed by which a uniform coating containing controlled amounts of (poly) metallic nanoparticles can be obtained. This elegant strategy is based on the condensation of metal oxide species by self-assembly in the presence of metallic colloids. The potential microreactor applications brought forth by this innovative protocol are placed in perspective in the light of its versatility.