915 resultados para WOOD FIBERS
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2013
Resumo:
3 (1838)
Resumo:
The present paper refers to a research work carried out at the Dept. of Agriculture and Horticulture of ESALQ, University of São Paulo, in Piracicaba, State of São Paulo (latitude 22º42'S, longitude 47º33' WG and altitude 546 m). Sowing at different times and using artificial cover, an attempt was made to evaluate the behavior of cultivar IAC 17 of cotton (Gossypium hirsutum L.) as to production and quality of fiber relating to incident solar radiation. Incident solar radiation, as well as insolation during the trial period, were tabulated and compared with yelds and agricultural and technological characters of fibers. The treatment under cover showed a mean level of incident solar radiation equivalent to less than 20% of that at clear sky, causing a decrease in cotton production and in the agricultural and technological characters of fibers.
Resumo:
1 - 2 (1837-38)
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Maschinenbau, Univ., Dissertation, 2015
Resumo:
v.20:no.37(1938)
Resumo:
v.31:no.35(1949)
Resumo:
Article VII
Resumo:
Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.
Resumo:
Water transport in wood is vital for the survival of trees. With synchrotron radiation X-ray tomographic microscopy (SRXTM), it has become possible to characterize and quantify the three-dimensional (3D) network formed by vessels that are responsible for longitudinal transport. In the present study, the spatial size dependence of vessels and the organization inside single growth rings in terms of vessel-induced porosity was studied by SRXTM. Network characteristics, such as connectivity, were deduced by digital image analysis from the processed tomographic data and related to known complex network topologies.