986 resultados para WESTERN BOUNDARY
Resumo:
The interaction between polynyas and the atmospheric boundary layer is examined in the Laptev Sea using the regional, non-hydrostatic Consortium for Small-scale Modelling (COSMO) atmosphere model. A thermodynamic sea-ice model is used to consider the response of sea-ice surface temperature to idealized atmospheric forcing. The idealized regimes represent atmospheric conditions that are typical for the Laptev Sea region. Cold wintertime conditions are investigated with sea-ice–ocean temperature differences of up to 40 K. The Laptev Sea flaw polynyas strongly modify the atmospheric boundary layer. Convectively mixed layers reach heights of up to 1200 m above the polynyas with temperature anomalies of more than 5 K. Horizontal transport of heat expands to areas more than 500 km downstream of the polynyas. Strong wind regimes lead to a more shallow mixed layer with strong near-surface modifications, while weaker wind regimes show a deeper, well-mixed convective boundary layer. Shallow mesoscale circulations occur in the vicinity of ice-free and thin-ice covered polynyas. They are forced by large turbulent and radiative heat fluxes from the surface of up to 789 W m−2, strong low-level thermally induced convergence and cold air flow from the orographic structure of the Taimyr Peninsula in the western Laptev Sea region. Based on the surface energy balance we derive potential sea-ice production rates between 8 and 25 cm d−1. These production rates are mainly determined by whether the polynyas are ice-free or covered by thin ice and by the wind strength.
Resumo:
The Central Atlantic Magmatic Province (CAMP), emplaced at the Triassic-Jurassic (T-J) boundary (-200 Ma), is among the largest igneous provinces on Earth. The Maranhao basin in NE Brazil is located around 700 km inland and 2000 km from the site of the earliest Pangea disruption. The CAMP tholeiites occur only in the western part of the basin and have been described as low and high-Ti. Here we document the occurrence of two sub-groups among the high-Ti tholeiites in the Western Maranhao basin. The major and trace elements and the Sr-Nd-Pb isotopic ratios define three chemical groups corresponding to the low-Ti (TiO(2)< 1.3 wt.%), high-Ti (TiO(2)-2.0 wt.%) and evolved high-Ti (TiO(2 >)3 wt.%) western Maranhao basin tholeiites (WMBT). The new (40)Ar/(39)Ar plateau ages obtained on plagioclase separates for high-Ti (199.7 +/- 2.4 Ma) and evolved high-Ti WMBT (197.2 +/- 0.5 Ma and 198.2 +/- 0.6 Ma) are indistinguishable and identical to those of previously analyzed low-Ti WMBT (198.5 +/- 0.8 Ma) and to the mean (40)Ar/(39)Ar age of the CAMP (199 +/- 2.4 Ma). We also present the first Re-Os isotopic data for CAMP basalts. The low and high-Ti samples display mantle-like initial ((187)Os/(188)Os)(i) ranging from 0.1267 to 0.1299, while the evolved high-Ti samples are more radiogenic (((187)Os/ (188)Os)(i) up to 0.184) We propose that the high-Ti WMBT were derived from the sub-lithospheric asthenosphere, and contaminated during ascent by interaction with the subcontinental lithospheric mantle (SCLM). The evolved high-Ti WMBT were derived from the same asthenospheric source but experienced crustal contamination. The chemical characteristics of the low-Ti group can be explained by partial melting of the most fertile portions of the SCLM metasomatized during paleo-subduction. Alternatively, the low-Ti WMBT could be derived from the sub-lithospheric asthenosphere but the resulting melts may have undergone contamination by the SCLM. The occurrences of high-Ti basalts are apparently not restricted to the area of initial continental disruption which may bring into question previous interpretations such as those relating high-Ti CAMP magmatism to the initiation of Atlantic ridge spreading or as the expression of a deep mantle plume. We propose that the CAMP magmatism in the Maranhao basin may be attributed to local hotter mantle conditions due to the combined effects of edge-driven convection and large-scale mantle warming under the Pangea supercontinent. The involvement of a mantle-plume with asthenosphere-like isotopic characteristics cannot be ruled out either as one of the main source components of the WMBT or as a heat supplier. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
Although cross-cultural leadership research has thrived in international business literature, little attention has been devoted to understanding the effectiveness of non-western theories beyond their original contexts. The purpose of this study is to examine the cross-cultural endorsement of paternalistic leadership, an emerging non-western leadership theory, using data from GLOBE project. Using multigroup confirmatory factor analyses we found measurement equivalence of a scale derived from GLOBE’s data, which enabled us to compare the endorsement of paternalistic leadership dimensions across 10 cultural clusters and 55 societies. Our study revealed that there are significant differences in the importance societies give to each dimension, suggesting that paternalism as leadership style is not universally nor homogeneously endorsed. Furthermore, results suggest that different patterns of endorsement of each of these dimensions give rise to idiosyncratic shades of paternalistic leadership across societies. Implications for theory and future research on international business are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study is designed to compare the monthly continental snow cover and sea ice extent loss in the Arctic with regional atmospheric conditions including: mean sea level pressure, 925 hPa air temperature, and mean wind direction among others during the melt season (March-August) over the 29-year study period 1979-2007. Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, since these data are largely stored in incompatible formats. However, the analysis of these data, averaged spatially over three autonomous study regions located in Siberia, North America, and Western Russia, reveals a distinct difference in the response of snow and sea ice to the atmospheric forcing. On average, sea ice extent is lost earlier in the year, in May, than snow cover, in June, although Arctic sea ice is located farther north than continental snow in all three study regions. Once the loss of snow and ice extent begins, snow cover is completely removed sooner than sea ice extent, even though ice loss begins earlier in the melt season. Further, the analysis of the atmospheric conditions surrounding loss of snow and ice cover over the independent study regions indicates that conditions of cool temperatures with strong northeasterly winds in the later melt season months are effective at removing sea ice cover, likely through ice divergence, as are warmer temperatures via southerly winds directly forcing melt. The results of this study set the framework for further analysis of the direct influence of snow cover loss on later melt season sea ice extents and the predictability of snow and sea ice extent responses to modeled future climate conditions
Resumo:
The analysis of diatoms from two lake-sediment cores from southwestern Tasmania that span the Pleistocene-Holocene boundary provides insight about paleolimnological and paleoclimatic change in this region. Both Lake Vera (550 m elevation), in west-central Tasmania, and Eagle Tarn (1,033 m elevation), in south-central Tasmania, have lacustrine records that begin about 12,000 years ago. Despite significant differences in location, elevation, and geologic terrane, both lakes have, had similar, as well as synchronous, limnological histories. Each appears to have been larger and more alkaline 12,000 years ago than at present, and both became shallower through time. Fossil diatom assemblages about 11,500 years old indicate shallow-water environments that fluctuated in pH between acidic and alkaline, and between dilute and possibly slightly saline hydrochemical conditions ( The synchroneity and similar character of the paleolimnological changes at these separate and distinctive sites suggests a regional paleoclimatic cause rather than local environmental effects. Latest Pleistocene climates were apparently more continental and drier than Holocene climates in southwestern Tasmania.
Resumo:
Iberia Africa plate boundary, cross, roughly W-E, connecting the eastern Atlantic Ocean from Azores triple junction to the Continental margin of Morocco. Relative movement between the two plate change along the boundary, from transtensive near the Azores archipelago, through trascurrent movement in the middle at the Gloria Fracture Zone, to transpressive in the Gulf of Cadiz area. This study presents the results of geophysical and geological analysis on the plate boundary area offshore Gibraltar. The main topic is to clarify the geodynamic evolution of this area from Oligocene to Quaternary. Recent studies have shown that the new plate boundary is represented by a 600 km long set of aligned, dextral trascurrent faults (the SWIM lineaments) connecting the Gloria fault to the Riff orogene. The western termination of these lineaments crosscuts the Gibraltar accretionary prism and seems to reach the Moroccan continental shelf. In the past two years newly acquired bathymetric data collected in the Moroccan offshore permit to enlighten the present position of the eastern portion of the plate boundary, previously thought to be a diffuse plate boundary. The plate boundary evolution, from the onset of compression in the Oligocene to the Late Pliocene activation of trascurrent structures, is not yet well constrained. The review of available seismics lines, gravity and bathymetric data, together with the analysis of new acquired bathymetric and high resolution seismic data offshore Morocco, allows to understand how the deformation acted at lithospheric scale under the compressive regime. Lithospheric folding in the area is suggested, and a new conceptual model is proposed for the propagation of the deformation acting in the brittle crust during this process. Our results show that lithospheric folding, both in oceanic and thinned continental crust, produced large wavelength synclines bounded by short wavelength, top thrust, anticlines. Two of these anticlines are located in the Gulf of Cadiz, and are represented by the Gorringe Ridge and Coral Patch seamounts. Lithospheric folding probably interacted with the Monchique – Madeira hotspot during the 72 Ma to Recent, NNE – SSW transit. Plume related volcanism is for the first time described on top of the Coral Patch seamount, where nine volcanoes are found by means of bathymetric data. 40Ar-39Ar age of 31.4±1.98 Ma are measured from one rock sample of one of these volcanoes. Analysis on biogenic samples show how the Coral Patch act as a starved offshore seamount since the Chattian. We proposed that compression stress formed lithospheric scale structures playing as a reserved lane for the upwelling of mantle material during the hotspot transit. The interaction between lithospheric folding and the hotspot emplacement can be also responsible for the irregularly spacing, and anomalous alignments, of individual islands and seamounts belonging to the Monchique - Madeira hotspot.
Resumo:
This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.
Resumo:
The aim of this project was to evaluate the present state and possible changes of water resources in Lake Ladoga and its drainage basin for the purposes of the sustainable development of North-Western Russia and Finland. The group assessed the state of the water resources in quantitative and qualitative terms, taking the system of sustainable development indicators suggested by the International Commission on Sustainable Development as a basis for assessment. These include pressure indicators (annual withdrawals of ground and surface water, domestic consumption of water per capita), state indicators (ground water reserves, concentration of faecalcoliform in fresh water, biochemical oxygen demand), and response indicators (waste-water treatment coverage, density of hydrological networks). The group proposed the following additional indicators and indices for the complex evaluation of the qualitative and quantitative state of the region's water resources: * Pressure indicators (external load, coefficient of anthropogenic pressure) * State indicators and indices (concentrations of chemicals in water, concentrations of chemicals in sediments, index of water pollution, critical load, critical limit, internal load, load/critical load, concentration/critical limit, internal load/external load, trophic state, biotic indicators and indices) * Response indicators (discharges of pure water, polluted water, partly treated water and the ratio between these, trans-boundary fluxes of pollutants, state expenditure on environmental protection, human life span) The assessment considered both temporal and spatial aspects and produced a regional classification of the area according to the index of water pollution. Mathematical models were developed to describe and forecast the processes under way in the lake and can be used to estimate the influence of climatic changes on the hydrological regime, as well as the influence of anthropogenic load on the trophic state of Lake Ladoga and to assess the consequences of accidental discharges of polluting admixtures of different kinds into the lake. The results of this mathematical modelling may be of use to decision-makers responsible for the management of water resources.
Resumo:
Upper Jurassic (Kimmeridgian)±Upper Cretaceous (Cenomanian) inner platform carbonates in the Western Taurides are composed of metre-scale upward-shallowing cyclic deposits (parasequences) and important karstic surfaces capping some of the cycles. Peritidal cycles (shallow subtidal facies capped by tidal-¯at laminites or fenestrate limestones) are regressive- and transgressive-prone (upward-deepening followed by upward-shallowing facies trends). Subtidal cycles are of two types and indicate incomplete shallowing. Submerged subtidal cycles are composed of deeper subtidal facies overlain by shallow subtidal facies. Exposed subtidal cycles consist of deeper subtidal facies overlain by shallow subtidal facies that are capped by features indicative of prolonged subaerial exposure. Subtidal facies occur characteristically in the Jurassic, while peritidal cycles are typical for the Lower Cretaceous of the region. Within the foraminiferal and dasyclad algal biostratigraphic framework, four karst breccia levels are recognized as the boundaries of major second-order cycles, introduced for the ®rst time in this study. These levels correspond to the Kimmeridgian±Portlandian boundary, mid-Early Valanginian, mid-Early Aptian and mid-Cenomanian and represent important sea level falls which affected the distribution of foraminiferal fauna and dasyclad ¯ora of the Taurus carbonate platform. Within the Kimmeridgian±Cenomanian interval 26 third-order sequences (types 1 and 2) are recognized. These sequences are the records of eustatic sea level ¯uctuations rather than the records of local tectonic events because the boundaries of the sequences representing 1±4 Ma intervals are correlative with global sea level falls. Third-order sequences and metre-scale cyclic deposits are the major units used for long-distance, high-resolution sequence stratigraphic correlation in the Western Taurides. Metre-scale cyclic deposits (parasequences) in the Cretaceous show genetical stacking patterns within third-order sequences and correspond to fourth-order sequences representing 100±200 ka. These cycles are possibly the E2 signal (126 ka) of the orbital eccentricity cycles of the Milankovitch band. The slight deviation of values, calculated for parasequences, from the mean value of eccentricity cycles can be explained by the currently imprecise geochronology established in the Cretaceous and missed sea level oscillations when the platform lay above fluctuating sea level.
Resumo:
DAURE (Determination of the Sources of Atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean) was a multidisciplinary international field campaign aimed at investigating the sources and meteorological controls of particulate matter in the Western Mediterranean Basin (WMB). Measurements were simultaneously performed at an urban-coastal (Barcelona, BCN) and a rural-elevated (Montseny, MSY) site pair in NE Spain during winter and summer. State-of-the-art methods such as 14C analysis, proton-transfer reaction mass spectrometry, and high-resolution aerosol mass spectrometry were applied for the first time in the WMB as part of DAURE. WMB regional pollution episodes were associated with high concentrations of inorganic and organic species formed during the transport to inland areas and built up at regional scales. Winter pollutants accumulation depended on the degree of regional stagnation of an air mass under anticyclonic conditions and the planetary boundary layer height. In summer, regional recirculation and biogenic secondary organic aerosols (SOA) formation mainly determined the regional pollutant concentrations. The contribution from fossil sources to organic carbon (OC) and elemental carbon (EC) and hydrocarbon-like organic aerosol concentrations were higher at BCN compared with MSY due to traffic emissions. The relative contribution of nonfossil OC was higher at MSY especially in summer due to biogenic emissions. The fossil OC/EC ratio at MSY was twice the corresponding ratio at BCN indicating that a substantial fraction of fossil OC was due to fossil SOA. In winter, BCN cooking emissions were identified as an important source of modern carbon in primary organic aerosol.
Resumo:
U–Pb zircon analyses from three meta-igneous and two metasedimentary rocks from the Siviez-Mischabel nappe in the western Swiss Alps are presented, and are used to derive an evolutionary history spanning from Paleoarchean crustal growth to Permian magmatism. The oldest components are preserved in zircons from metasedimentary albitic schists. The oldest zircon core in these schists is 3.4 Ga old. Detrital zircons reveal episodes of crustal growth in the Neoarchean (2.7–2.5 Ga), Paleoproterozoic (2.2–1.9 Ma) and Neoproterozoic (800–550 Ma, Pan-African event). The maximum age of deposition for the metasedimentary rocks is given by the youngest detrital zircons within both metasedimentary samples dated at ~490 Ma (Cambrian-Ordovician boundary). This is in the age range of two granitoid samples dated at 505 ± 4 and 482 ± 7 Ma, and indicates sedimentation and magmatism in an extensional setting preceding an Ordovician orogeny. The third felsic meta-igneous rock gives a Permian age of intrusion, and is part of a long-lasting Variscan to post-Variscan magmatic activity. The zircons record only minor disturbance of the U–Pb system during the Alpine orogeny.
Resumo:
We synthesized published data on the erosion of the Alpine foreland basin and apatite fission-track ages from the Alps to infer the erosional sediment budget history for the past 5 m.y. The data reveal that erosion of the Alpine foreland basin is highest in front of the western Alps (between 2 and 0.6 km) and decreases eastward over a distance of 700 km to the Austrian foreland basin (similar to 200 m). For the western Alps, erosion rates are >0.6 km/m.y., while erosion rates for the eastern foreland basin and the adjacent eastern Alps are <0.1 km/m.y., except for a small-scale signal in the Tauern Window. The results yield a large ellipsoidal, orogen-crossing pattern of erosion, centered along the western Alps. We suggest that accelerated erosion of the western Alps and their foreland basin occurred in response to regional-scale surface uplift, related to lithospheric unloading of the Eurasian slab along the Eurasian-Adriatic plate boundary. While we cannot rule out recent views that global climate change led to substantial erosion of the European Alps since 5 Ma, we postulate that regional-scale tectonic processes have driven erosion during this time, modulated by an increased erosional flux in response to Quaternary glaciations.
Resumo:
The Dent Blanche Tectonic System (DBTS) is a composite thrust sheet derived from the previously thinned passive Adriatic continental margin. A kilometric high-strain zone, the Roisan-Cignana Shear Zone (RCSZ) defines the major tectonic boundary within the DBTS and separates it into two subunits, the Dent Blanche s.s. nappe to the northwest and the Mont Mary nappe to the southeast. Within this shear zone, tectonic slices of Mesozoic and pre-Alpine meta-sediments became amalgamated with continental basement rocks of the Adriatic margin. The occurrence of high pressure assemblages along the contact between these tectonic slices indicates that the amalgamation occurred prior to or during the subduction process, at an early stage of the Alpine orogenic cycle. Detailed mapping, petrographic and structural analysis show that the Roisan-Cignana Shear Zone results from several superimposed Alpine structural and metamorphic stages. Subduction of the continental fragments is recorded by blueschist-facies deformation, whereas the Alpine collision is reflected by a greenschist facies overprint associated with the development of large-scale open folds. The postnappe evolution comprises the development of low-angle brittle faults, followed by large-scale folding (Vanzone phase) and finally brittle extensional faults. The RCSZ shows that fragments of continental crust had been torn off the passive continental margin prior to continental collision, thus recording the entire history of the orogenic cycle. The role of preceding Permo-Triassic lithospheric thinning, Jurassic rifting, and ablative subduction processes in controlling the removal of crustal fragments from the reactivated passive continental margin is discussed. Results of this study constrain the temporal sequence of the tectono-metamorphic processes involved in the assembly of the DBTS, but they also show limits on the interpretation. In particular it remains difficult to judge to what extent precollisional rifting at the Adriatic continental margin preconditioned the efficiency of convergent processes, i.e. accretion, subduction, and orogenic exhumation.
Resumo:
We present the evolution of oceanographic conditions off the western coast of South America between 1996 and 1999, including the cold periods of 1996 and 1998-1999 and the 1997-1998 El Niño, using satellite observations of sea level, winds, sea surface temperature (SST), and chlorophyll concentration. Following a period of cold SST and low sea levels in 1996, both were anomalously high between March 1997 and May 1998. The anomalies were greatest between 5 degrees S and 15 degrees S, although they extended beyond 40 degrees S. Two distinct peaks in sea level and SST occurred in June-July 1997 and December 1997 to January 1998, separated by a relaxation period (August-November) of weaker anomalies. Satellite winds were upwelling favorable throughout the time period for most of the region and in fact increased between November 1997 and March 1998 between 5 degrees S and 25 degrees S. Satellite-derived chlorophyll concentrations are available for November 1996 to June 1997 (Ocean Color and Temperature Sensor (OCTS)) and then from October 1997 to present (Sea-viewing Wide Field-of-view Sensor (SeaWiFS)). Near-surface chlorophyll concentrations fell from May to June 1997 and from December 1997 to March 1998. The decrease was more pronounced in northern Chile than off the coast of Peru or central Chile and was stronger for larger cross-shelf averaging bins since nearshore concentrations remained relatively high.