988 resultados para WELL INFRARED PHOTODETECTORS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present photometric and spectroscopic observations of SN 2013fc, a bright type II supernova (SN) in a circumnuclear star-forming ring in the luminous infrared galaxy ESO 154-G010, observed as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2013fc is both photometrically and spectroscopically similar to the well-studied type IIn SN 1998S and to the bright type II-L SN 1979C. It exhibits an initial linear decline, followed by a short plateau phase and a tail phase with a decline too fast for 56Co decay with full γ -ray trapping. Initially, the spectrum was blue and featureless. Later on, a strong broad (~8000 km s-1) H α emission profile became prominent. We apply a STARLIGHT stellar population model fit to the SN location (observed when the SN had faded) to estimate a high extinction of AV = 2.9 ± 0.2 mag and an age of 10+3 -2 Myr for the underlying cluster.We compare the SN to SNe 1998S and 1979C and discuss its possible progenitor star considering the similarities to these events. With a peak brightness of B = -20.46 ± 0.21 mag, SN 2013fc is 0.9 mag brighter than SN 1998S and of comparable brightness to SN 1979C.We suggest that SN 2013fc was consistent with a massive red supergiant (RSG) progenitor. Recent mass loss probably due to a strong RSG wind created the circumstellar matter illuminated through its interaction with the SN ejecta. We also observe a near-infrared excess, possibly due to newly condensed dust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the thermomechanical sensitivity of bimaterial cantilevers over a mid-infrared (IR) spectral range (5-10 µm) that is critical both for chemical analysis via vibrational spectroscopy and for direct thermal detection in the 300-700 K range. Mechanical bending sensitivity and noise were measured and modeled for six commercially available microcantilevers, which consist of either an aluminum film on a silicon cantilever or a gold film on a silicon nitride cantilever. The spectral sensitivity of each cantilever was determined by recording cantilever deflection when illuminated with IR light from a monochromator. Rigorous modeling and systematic characterization of the optical system allowed for a quantitative estimate of IR energy incident upon the cantilever. Separately, spectral absorptance of the cantilever was measured using Fourier transform infrared (FT-IR) microscopy, which was compared with analytical models of radiation onto the cantilever and heat flow within the cantilever. The predictions of microcantilever thermomechanical bending sensitivity and noise agree well with measurements, resulting in a ranking of these cantilevers for their potential use in IR measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous applications within the mid- and long-wavelength infrared are driving the search for efficient and cost effective detection technologies in this regime. Theoretical calculations have predicted high performance for InAs/GaSb type-II superlattice structures, which rely on mature growth of III-V semiconductors and offer many levels of freedom in design due to band structure engineering. This work focuses on the fabrication and characterization of type-II superlattice infrared detectors. Standard UV-based photolithography was used combined with chemical wet or dry etching techniques in order to fabricate antinomy-based type-II superlattice infrared detectors. Subsequently, Fourier transform infrared spectroscopy and radiometric techniques were applied for optical characterization in order to obtain a detector's spectrum and response, as well as the overall detectivity in combination with electrical characterization. Temperature dependent electrical characterization was used to extract information about the limiting dark current processes. This work resulted in the first demonstration of an InAs/GaSb type-II superlattice infrared photodetector grown by metalorganic chemical vapor deposition. A peak detectivity of 1.6x10^9 Jones at 78 K was achieved for this device with a 11 micrometer zero cutoff wavelength. Furthermore the interband tunneling detector designed for the mid-wavelength infrared regime was studied. Similar results to those previously published were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Most European birds of prey find themselves in a poor state of conservation, with electrocution as one of the most frequent causes of unnatural death. Since early detection of electrocution is difficult, treatment is usually implemented late, which reduces its effectiveness. By considering that electrocution reduces tissue temperature, it may be detectable by thermography, which would allow a more rapid identification. Three individuals from three endangered raptor species [Spanish imperial eagle (Aquila adalberti), Lammergeier (Gypaetus barbatus) and Osprey (Pandion haliaetus)] were studied thermographically from the time they were admitted to a rehabilitation centre to the time their clinical cases were resolved. CASES PRESENTATION The three raptors presented lesions lacking thermal bilateral symmetry and were consistent with electrocution of feet, wings and eyes, visible by thermography before than clinically; lesions were well-defined and showed a lower temperature than the surrounding tissue. Some lesions evolved thermally and clinically until the appearance of normal tissue recovered, while others evolved and became necrotic. A histopathological analysis of a damaged finger amputated off a Lammergeier, and the necropsy and histopathology examination of an osprey, confirmed the electrocution diagnosis. CONCLUSIONS These results suggest that thermography is effective and useful for the objective and early detection and monitoring of electrocuted birds, and that it may prove especially useful for examining live animals that require no amputation or cannot be subjected to invasive histopathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EChO (Exoplanet atmospheres Characterization Observatory), a proposal for exoplanets exploration space mission, is considered the next step for planetary atmospheres characterization. It would be a dedicated observatory to uncover a large selected sample of planets spanning a wide range of masses (from gas giants to super-Earths) and orbital temperatures (from hot to habitable). All targets move around stars of spectral types F, G, K, and M. EChO would provide an unprecedented view of the atmospheres of planets in the solar neighbourhood. The consortium formed by various institutions of different countries proposed as ESA M3 an integrated spectrometer payload for EChO covering the wavelength interval 0.4 to 16 µm. This instrument is subdivided into 4 channels: a visible channel, which includes a fine guidance system (FGS) and a VIS spectrometer, a near infrared channel (SWiR), a middle infrared channel (MWiR), and a long wave infrared module (LWiR). In addition, it contains a common set of optics spectrally dividing the wavelength coverage and injecting the combined light of parent stars and their exoplanets into the different channels. The proposed payload meets all of the key performance requirements detailed in the ESA call for proposals as well as all scientific goals. EChO payload is based on different spectrometers covering the spectral range mentioned above. Among them, SWiR spectrometer would work from 2.45 microns to 5.45 microns. In this paper, the optical and mechanical designs of the SWiR channel instrument are reported on.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-infrared polarimetry observation is a powerful tool to study the central sources at the center of the Milky Way. My aim of this thesis is to analyze the polarized emission present in the central few light years of the Galactic Center region, in particular the non-thermal polarized emission of Sagittarius~A* (Sgr~A*), the electromagnetic manifestation of the super-massive black hole, and the polarized emission of an infrared-excess source in the literature referred to as DSO/G2. This source is in orbit about Sgr~A*. In this thesis I focus onto the Galactic Center observations at $\lambda=2.2~\mu m$ ($K_\mathrm{s}$-band) in polarimetry mode during several epochs from 2004 to 2012. The near-infrared polarized observations have been carried out using the adaptive optics instrument NAOS/CONICA and Wollaston prism at the Very Large Telescope of ESO (European Southern Observatory). Linear polarization at 2.2 $\mu m$, its flux statistics and time variation, can be used to constrain the physical conditions of the accretion process onto the central super-massive black hole. I present a statistical analysis of polarized $K_\mathrm{s}$-band emission from Sgr~A* and investigate the most comprehensive sample of near-infrared polarimetric light curves of this source up to now. I find several polarized flux excursions during the years and obtain an exponent of about 4 for the power-law fitted to polarized flux density distribution of fluxes above 5~mJy. Therefore, this distribution is closely linked to the single state power-law distribution of the total $K_\mathrm{s}$-band flux densities reported earlier by us. I find polarization degrees of the order of 20\%$\pm$10\% and a preferred polarization angle of $13^o\pm15^o$. Based on simulations of polarimetric measurements given the observed flux density and its uncertainty in orthogonal polarimetry channels, I find that the uncertainties of polarization parameters under a total flux density of $\sim 2\,{\mathrm{mJy}}$ are probably dominated by observational uncertainties. At higher flux densities there are intrinsic variations of polarization degree and angle within rather well constrained ranges. Since the emission is most likely due to optically thin synchrotron radiation, the obtained preferred polarization angle is very likely reflecting the intrinsic orientation of the Sgr~A* system i.e. an accretion disk or jet/wind scenario coupled to the super-massive black hole. Our polarization statistics show that Sgr~A* must be a stable system, both in terms of geometry, and the accretion process. I also investigate an infrared-excess source called G2 or Dusty S-cluster Object (DSO) moving on a highly eccentric orbit around the Galaxy's central black hole, Sgr~A*. I use for the first time the near-infrared polarimetric imaging data to determine the nature and the properties of DSO and obtain an improved $K_\mathrm{s}$-band identification of this source in median polarimetry images of different observing years. The source starts to deviate from the stellar confusion in 2008 data and it does not show a flux density variability based on our data set. Furthermore, I measure the polarization degree and angle of this source and conclude based on the simulations on polarization parameters that it is an intrinsically polarized source with a varying polarization angle as it approaches Sgr~A* position. I use the interpretation of the DSO polarimetry measurements to assess its possible properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tridecameric Al-polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Under slow evaporation crystals were formed of Al13-nitrate. Upon addition of sulfate the tridecamer crystallised as the monoclinic Al13-sulfate. These crystals have been studied using near-infrared spectroscopy and compared to Al2(SO4)3.16H2O. Although the near-infrared spectra of the Al13-sulfate and nitrate are very similar indicating similar crystal structures, there are minor differences related to the strength with which the crystal water molecules are bonded to the salt groups. The interaction between crystal water and nitrate is stronger than with the sulfate as reflected by the shift of the crystal water band positions from 6213, 4874 and 4553 cm–1 for the Al13 sulfate towards 5925, 4848 and 4532 cm–1 for the nitrate. A reversed shift from 5079 and 5037 cm–1 for the sulfate towards 5238 and 5040 cm–1 for the nitrate for the water molecules in the Al13 indicate that the nitrate-Al13 bond is weakened due to the influence of the crystal water on the nitrate. The Al-OH bond in the Al13 complex is not influenced by changing the salt group due to the shielding by the water molecules of the Al13 complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible, near-infrared, IR and Raman spectra of magnesian gaspeite are presented. Nickel ion is the main source of the electronic bands as it is the principal component in the mineral where as the bands in IR and Raman spectra are due to the vibrational processes in the carbonate ion as an entity. The combination of electronic absorption and vibrational spectra (including near-infrared, FTIR and Raman) of magnesian gaspeite are explained in terms of the cation co-ordination and the behaviour of CO32– anion in the Ni–Mg carbonate. The electronic absorption spectrum consists of three broad and intense bands at 8130, 13160 and 22730 cm–1 due to spin-allowed transitions and two weak bands at 20410 and 30300 cm–1 are assigned to spin-forbidden transitions of Ni2+ in an octahedral symmetry. The crystal field parameters evaluated from the observed bands are Dq = 810; B = 800 and C = 3200 cm–1. The two bands in the near-infrared spectrum at 4330 and 5130 cm–1 are overtone and combination of CO32– vibrational modes. For the carbonate group, infrared bands are observed at 1020 cm–1(1 ), 870 cm–1 (2), 1418 cm–1 (3) and 750 cm–1 (4), of which3, the asymmetric stretching mode is most intense. Three well resolved Raman bands at 1571, 1088 and 331 cm–1 are assigned to 3, 1 and MO stretching vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared (IR) spectroscopic data for a series of eleven heteroleptic bis(phthalocyaninato) rare earth complexes MIII(Pc)[Pc(α-OC5H11)4] (M = Sm–Lu, Y) [H2Pc = unsubstituted phthalocyanine, H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected with 2 cm−1 resolution. Raman spectroscopic properties in the range of 500–1800 cm−1 for these double-decker molecules have also been comparatively studied using laser excitation sources emitting at 632.8 and 785 nm. Both the IR and Raman spectra for M(Pc)[Pc(α-OC5H11)4] are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds, namely C4. For this series, the IR Pc√− marker band appears as an intense absorption at 1309–1317 cm−1, attributed to the pyrrole stretching. With laser excitation at 632.8 nm, Raman vibrations derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. In contrast, when excited with laser radiation of 785 nm, the ring radial vibrations of isoindole moieties and dihedral plane deformations between 500 and 1000 cm−1 for M(Pc)[Pc(α-OC5H11)4] intensify to become the strongest scatterings. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing, isoindole stretchings, aza stretchings and coupling of pyrrole and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series. The assignments of the vibrational bands for these compounds have been made and discussed in relation to other unsubstituted and substituted bis(phthalocyaninato) rare earth analogues, such as M(Pc)2 and M(OOPc)2 [H2OOPc = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of selected autunites with phosphate as the anion have been studied using infrared spectroscopy. Each autunite mineral has its own characteristic spectrum. The spectra for different autunites with the same composition are different. It is proposed that this difference is due to the structure of water and hydrated cations in the interlayer region between the uranyl phosphate sheets. This structure is different for different autunites. The position of the water hydroxyl stretching bands is related to the strength of the hydrogen bonds as determined by hydrogen bond distance. The highly ordered structure of water is also observed in the water HOH bending modes where a high wavenumber bands are observed. The phosphate and uranyl stretching vibrations overlap and are obtained by curve resolution.