988 resultados para WAVE-EQUATIONS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To describe the various complex mechanisms of the dissipative dynamical system between waves, currents, and bottoms in the nearshore region that induce typically the wave motion on large-scale variation of ambient currents, a generalized wave action equation for the dissipative dynamical system in the nearshore region is developed by using the mean-flow equations based on the Navier-Stokes equations of viscous fluid, thus raising two new concepts: the vertical velocity wave action and the dissipative wave action, extending the classical concept, wave action, from the ideal averaged flow conservative system into the real averaged flow dissipative system (that is, the generalized conservative system). It will have more applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact upwind scheme with dispersion control is developed using a dissipation analogy of the dispersion term. The term is important in reducing the unphysical fluctuations in numerical solutions. The scheme depends on three free parameters that may be used to regulate the size of dissipation as well as the size and direction of dispersion. A coefficient to coordinate the dispersion is given. The scheme has high accuracy, the method is simple, and the amount of computation is small. It also has a good capability of capturing shock waves. Numerical experiments are carried out with two-dimensional shock wave reflections and the results are very satisfactory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting from the second-order finite volume scheme,though numerical value perturbation of the cell facial fluxes, the perturbational finite volume (PFV) scheme of the Navier-Stokes (NS) equations for compressible flow is developed in this paper. The central PFV scheme is used to compute the one-dimensional NS equations with shock wave.Numerical results show that the PFV scheme can obtain essentially non-oscillatory solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.

The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.

We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.

We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.

Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.

Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.

In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonlinearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differential equations is analogous to the "multiple time scale" methods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geometrical optics to nonlinear problems.

To apply the expansion method to the classical water wave problem, it is crucial to find an appropriate variational principle. It was found in the present investigation that a Lagrangian function equal to the pressure yields the full set of equations of motion for the problem. After this result is derived, the Lagrangian is compared with the more usual expression formed from kinetic minus potential energy. The water wave problem is then examined by means of the expansion procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is in two parts. In the first part we give a qualitative study of wave propagation in an inhomogeneous medium principally by geometrical optics and ray theory. The inhomogeneity is represented by a sound-speed profile which is dependent upon one coordinate, namely the depth; and we discuss the general characteristics of wave propagation which result from a source placed on the sound channel axis. We show that our mathematical model of the sound- speed in the ocean actually predicts some of the behavior of the observed physical phenomena in the underwater sound channel. Using ray theoretic techniques we investigate the implications of our profile on the following characteristics of SOFAR propagation: (i) the sound energy traveling further away from the axis takes less time to travel from source to receiver than sound energy traveling closer to the axis, (ii) the focusing of sound energy in the sound channel at certain ranges, (iii) the overall ray picture in the sound channel.

In the second part a more penetrating quantitative study is done by means of analytical techniques on the governing equations. We study the transient problem for the Epstein profile by employing a double transform to formally derive an integral representation for the acoustic pressure amplitude, and from this representation we obtain several alternative representations. We study the case where both source and receiver are on the channel axis and greatly separated. In particular we verify some of the earlier results derived by ray theory and obtain asymptotic results for the acoustic pressure in the far-field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the theoretical solution and experimental verification of phase conjugation via nondegenerate four-wave mixing in resonant media. The theoretical work models the resonant medium as a two-level atomic system with the lower state of the system being the ground state of the atom. Working initially with an ensemble of stationary atoms, the density matrix equations are solved by third-order perturbation theory in the presence of the four applied electro-magnetic fields which are assumed to be nearly resonant with the atomic transition. Two of the applied fields are assumed to be non-depleted counterpropagating pump waves while the third wave is an incident signal wave. The fourth wave is the phase conjugate wave which is generated by the interaction of the three previous waves with the nonlinear medium. The solution of the density matrix equations gives the local polarization of the atom. The polarization is used in Maxwell's equations as a source term to solve for the propagation and generation of the signal wave and phase conjugate wave through the nonlinear medium. Studying the dependence of the phase conjugate signal on the various parameters such as frequency, we show how an ultrahigh-Q isotropically sensitive optical filter can be constructed using the phase conjugation process.

In many cases the pump waves may saturate the resonant medium so we also present another solution to the density matrix equations which is correct to all orders in the amplitude of the pump waves since the third-order solution is correct only to first-order in each of the field amplitudes. In the saturated regime, we predict several new phenomena associated with degenerate four-wave mixing and also describe the ac Stark effect and how it modifies the frequency response of the filtering process. We also show how a narrow bandwidth optical filter with an efficiency greater than unity can be constructed.

In many atomic systems the atoms are moving at significant velocities such that the Doppler linewidth of the system is larger than the homogeneous linewidth. The latter linewidth dominates the response of the ensemble of stationary atoms. To better understand this case the density matrix equations are solved to third-order by perturbation theory for an atom of velocity v. The solution for the polarization is then integrated over the velocity distribution of the macroscopic system which is assumed to be a gaussian distribution of velocities since that is an excellent model of many real systems. Using the Doppler broadened system, we explain how a tunable optical filter can be constructed whose bandwidth is limited by the homogeneous linewidth of the atom while the tuning range of the filter extends over the entire Doppler profile.

Since it is a resonant system, sodium vapor is used as the nonlinear medium in our experiments. The relevant properties of sodium are discussed in great detail. In particular, the wavefunctions of the 3S and 3P states are analyzed and a discussion of how the 3S-3P transition models a two-level system is given.

Using sodium as the nonlinear medium we demonstrate an ultrahigh-Q optical filter using phase conjugation via nondegenerate four-wave mixing as the filtering process. The filter has a FWHM bandwidth of 41 MHz and a maximum efficiency of 4 x 10-3. However, our theoretical work and other experimental work with sodium suggest that an efficient filter with both gain and a narrower bandwidth should be quite feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of determining probability density functions of general transformations of random processes is considered in this thesis. A method of solution is developed in which partial differential equations satisfied by the unknown density function are derived. These partial differential equations are interpreted as generalized forms of the classical Fokker-Planck-Kolmogorov equations and are shown to imply the classical equations for certain classes of Markov processes. Extensions of the generalized equations which overcome degeneracy occurring in the steady-state case are also obtained.

The equations of Darling and Siegert are derived as special cases of the generalized equations thereby providing unity to two previously existing theories. A technique for treating non-Markov processes by studying closely related Markov processes is proposed and is seen to yield the Darling and Siegert equations directly from the classical Fokker-Planck-Kolmogorov equations.

As illustrations of their applicability, the generalized Fokker-Planck-Kolmogorov equations are presented for certain joint probability density functions associated with the linear filter. These equations are solved for the density of the output of an arbitrary linear filter excited by Markov Gaussian noise and for the density of the output of an RC filter excited by the Poisson square wave. This latter density is also found by using the extensions of the generalized equations mentioned above. Finally, some new approaches for finding the output probability density function of an RC filter-limiter-RC filter system driven by white Gaussian noise are included. The results in this case exhibit the data required for complete solution and clearly illustrate some of the mathematical difficulties inherent to the use of the generalized equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.

Part II

The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equations of motion for the flow of a mixture of liquid droplets, their vapor, and an inert gas through a normal shock wave are derived. A set of equations is obtained which is solved numerically for the equilibrium conditions far downstream of the shock. The equations describing the process of reaching equilibrium are also obtained. This is a set of first-order nonlinear differential equations and must also be solved numerically. The detailed equilibration process is obtained for several cases and the results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject under investigation concerns the steady surface wave patterns created by small concentrated disturbances acting on a non-uniform flow of a heavy fluid. The initial value problem of a point disturbance in a primary flow having an arbitrary velocity distribution (U(y), 0, 0) in a direction parallel to the undisturbed free surface is formulated. A geometric optics method and the classical integral transformation method are employed as two different methods of solution for this problem. Whenever necessary, the special case of linear shear (i.e. U(y) = 1+ϵy)) is chosen for the purpose of facilitating the final integration of the solution.

The asymptotic form of the solution obtained by the method of integral transforms agrees with the leading terms of the solution obtained by geometric optics when the latter is expanded in powers of small ϵ r.

The overall effect of the shear is to confine the wave field on the downstream side of the disturbance to a region which is smaller than the wave region in the case of uniform flows. If U(y) vanishes, and changes sign at a critical plane y = ycr (e.g. ϵycr = -1 for the case of linear shear), then the boundary of this asymmetric wave field approaches this critical vertical plane. On this boundary the wave crests are all perpendicular to the x-axis, indicating that waves are reflected at this boundary.

Inside the wave field, as in the case of a point disturbance in a uniform primary flow, there exist two wave systems. The loci of constant phases (such as the crests or troughs) of these wave systems are not symmetric with respect to the x-axis. The geometric optics method and the integral transform method yield the same result of these loci for the special case of U(y) = Uo(1 + ϵy) and for large Kr (ϵr ˂˂ 1 ˂˂ Kr).

An expression for the variation of the amplitude of the waves in the wave field is obtained by the integral transform method. This is in the form of an expansion in small ϵr. The zeroth order is identical to the expression for the uniform stream case and is thus not applicable near the boundary of the wave region because it becomes infinite in that neighborhood. Throughout this investigation the viscous terms in the equations of motion are neglected, a reasonable assumption which can be justified when the wavelengths of the resulting waves are sufficiently large.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scattering of sound from a point source by a Rankine vortex is investigated numerically by solving the Euler equations with the novel high-resolution CABARET method. For several Mach numbers of the vortex, the time-average amplitudes of the scattered field obtained from the numerical modeling are compared with the theoretical scaling laws' predictions. Copyright © 2009 by Sergey Karabasov.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of unsteady disturbances in a slowlyvarying cylindrical duct carrying mean swirling flow is investigated using a multiple-scales technique. This is applicable to turbomachinery flow behind a rotor stage when the swirl and axial velocities are of the same order. The presence of mean vorticity couples acoustic and vorticity equations which produces an eigenvalue problem that is not self-adjoint unlike that for irrotational mean flow. In order to determine the amplitude variation along the duct, an adjoint solution for the coupled system of equations is derived. The solution breaks down where a mode changes from cut on to cut off. In this region the amplitude is governed by a form of Airy's equation, and the effect of swirl is to introduce a small shift in the origin of the Airy function away from the turning-point location. The variation of axial wavenumber and amplitude along the duct is calculated. In hard-walled ducts mean swirl is shown to produce much larger amplitude variation along the duct compared with a nonswirling flow. Mean swirl also has a large effect in ducts with finite-impedance walls which differs depending on whether modes are co-rotating with the swirl or counter rotating. © 2001 by A.J. Cooper, Published by the American Institute of Aeronautics and Astronautics, Inc.