996 resultados para W. Edwards Deming
Resumo:
In this paper optical code-division multiple-access (O-CDMA) packet network is considered, which offers inherent security in the access networks. The application of O-CDMA to multimedia transmission (voice, data, and video) is investigated. The simultaneous transmission of various services is achieved by assigning to each user unique multiple code signatures. Thus, by applying a parallel mapping technique, we achieve multi-rate services. A random access protocol is proposed, here, where all distinct codes are used, for packet transmission. The codes, Optical Orthogonal Code (OOC), or 1D codes and Wavelength/Time Single-Pulse-per-Row (W/T SPR), or 2D codes, are analyzed. These 1D and 2D codes with varied weight are used to differentiate the Quality of Service (QoS). The theoretical bit error probability corresponding to the quality of each service is established using 1D and 2D codes in the receiver noiseless case and compared. The results show that, using 2D codes QoS in multimedia transmission is better than using 1D codes.
Resumo:
Growth kinetics, phase boundary compositions, interdiffusion coefficients and the relative mobilities of the components are determined in the W-Pt system. The measured phase boundary compositions for the gamma phase are found to be different from the reported phase diagram. The interdiffusion coefficient and the activation energy decrease in the Pt(W) solid solution with increasing W content. An estimation of the parabolic growth constants and average interdiffusion coefficients in the gamma phase indicates that the diffusion process should be explained based on the estimation of diffusion parameters, which otherwise could lead to a wrong conclusion. The estimation of the relative mobilities of the components in the gamma phase indicates that Pt has a much higher diffusion rate than W. This is explained with the help of the crystal structure and the possible point defects present on different sublattices.
Resumo:
Autocatalytic duplex Ni-P/Ni-W-P coatings were deposited on AZ31B magnesium alloy using stabilizer free nickel carbonate bath. Some of the coated specimens were passivated in chromate solution with and without heat treatment. Plain Ni-P coatings were also prepared for comparison. Coatings were characterized for their surface morphology, composition and corrosion resistance. Energy dispersive analysis of X-ray (EDX) showed that the phosphorous content in the Ni-P coating is 6 wt.% and for Ni-W-P it reduced to 3 wt.% due to the codeposition of tungsten in the Ni-P coating. Marginal increase in P and W contents was observed on passivated coupons along with Cr (0.18 wt.%) and O (2.8 wt.%) contents. Field emission scanning electron microscopy (FESEM) examination of these coating surfaces exhibited the nodular morphology. Chromate passivated surfaces showed the presence of uniformly distributed bright Ni particles along with nodules. Potenfiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out in deaerated 0.15 M NaCI solution to find out the corrosion resistance of the coatings. Among the coatings developed, duplex-heat treated-passivated (duplex-HIP) coatings showed lower corrosion current density (i(corr)) and higher polarization resistance (R-p) indicating the improved corrosion resistance. The charge transfer resistance (R-ct) value obtained for the duplex-HIP was about 170 times higher compared to that for Ni P coating. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Group VB and VIB M-Si systems are considered to show an interesting pattern in the diffusion of components with the change in atomic number in a particular group (M = V, Nb, Ta or M = Mo, W, respectively). Mainly two phases, MSi2 and M5Si3 are considered for this discussion. Except for Ta-silicides, the activation energy for the integrated diffusion of MSi2 is always lower than M5Si3. In both phases, the relative mobilities measured by the ratio of the tracer diffusion coefficients, , decrease with an increasing atomic number in the given group. If determined at the same homologous temperature, the interdiffusion coefficients increase with the atomic number of the refractory metal in the MSi2 phases and decrease in the M5Si3 ones. This behaviour features the basic changes in the defect concentrations on different sublattices with a change in the atomic number of the refractory components.
Resumo:
The GW approximation to the electron self-energy has become a standard method for ab initio calculation of excited-state properties of condensed-matter systems. In many calculations, the G W self-energy operator, E, is taken to be diagonal in the density functional theory (DFT) Kohn-Sham basis within the G0 W0 scheme. However, there are known situations in which this diagonal Go Wo approximation starting from DFT is inadequate. We present two schemes to resolve such problems. The first, which we called sc-COHSEX-PG W, involves construction of an improved mean field using the static limit of GW, known as COHSEX (Coulomb hole and screened exchange), which is significantly simpler to treat than GW W. In this scheme, frequency-dependent self energy E(N), is constructed and taken to be diagonal in the COHSEX orbitals after the system is solved self-consistently within this formalism. The second method is called off diagonal-COHSEX G W (od-COHSEX-PG W). In this method, one does not self-consistently change the mean-field starting point but diagonalizes the COHSEX Hamiltonian within the Kohn-Sham basis to obtain quasiparticle wave functions and uses the resulting orbitals to construct the G W E in the diagonal form. We apply both methods to a molecular system, silane, and to two bulk systems, Si and Ge under pressure. For silane, both methods give good quasiparticle wave functions and energies. Both methods give good band gaps for bulk silicon and maintain good agreement with experiment. Further, the sc-COHSEX-PGW method solves the qualitatively incorrect DFT mean-field starting point (having a band overlap) in bulk Ge under pressure.
Resumo:
Amorphous W-S-N in the form of thin films has been identified experimentally as an ultra-low friction material, enabling easy sliding by the formation of a WS2 tribofilm. However, the atomic-level structure and bonding arrangements in amorphous W-S-N, which give such optimum conditions for WS2 formation and ultra-low friction, are not known. In this study, amorphous thin films with up to 37 at.% N are deposited, and experimental as well as state-of-the-art ab initio techniques are employed to reveal the complex structure of W-S-N at the atomic level. Excellent agreement between experimental and calculated coordination numbers and bond distances is demonstrated. Furthermore, the simulated structures are found to contain N bonded in molecular form, i.e. N-2, which is experimentally confirmed by near edge X-ray absorption fine structure and X-ray photoelectron spectroscopy analysis. Such N-2 units are located in cages in the material, where they are coordinated mainly by S atoms. Thus this ultra-low friction material is shown to be a complex amorphous network of W, S and N atoms, with easy access to W and S for continuous formation of WS2 in the contact region, and with the possibility of swift removal of excess nitrogen present as N-2 molecules. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ni-W alloy coatings are electrodeposited with direct and pulse current using gluconate bath at pH5. Effects of direct current (DC) and pulse current (PC) on structural characteristics of the coatings have been investigated by energy dispersive X-ray spectroscopy (EDXS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). EDXS shows that W contents are 13.3 and 12.6 at.% in DC and PC (10:40) Ni-W coatings, respectively. FESEM analysis exhibits the homogeneous coarse nodular morphology in DC plated deposits. DSC studies reveal that Ni-W coatings are thermally stable up to 400 degrees C. XPS studies demonstrate that DC plated coating has significant amount of Ni and W in elemental form along with their respective oxidized species. In contrast, mainly oxidized metals are present in the as-deposited coatings prepared with PC plating. The microhardness of pulse current (100:400) deposited Ni-W coating is about 750HK that is much higher than DC plated coating (635 HK). Heat treatment of the deposits carried out at different temperatures show a significant increase in microhardness which can be comparable with hard chromium coatings.
Resumo:
Since the discovery 1] of gamma' precipitate (L1(2) - Co-3 (Al, W)) in the Co-Al-W ternary system, there has been an increased interest in Co-based superalloys. Since these alloys have two phase microstructures (gamma + gamma') similar to Ni-based superalloys 2], they are viable candidates in high temperature applications, particularly in land-based turbines. The role of alloying on stability of the gamma' phase has been an active area of research. In this study, electronic structure calculations were done to probe the effect of alloying in Co3W with L1(2) structure. Compositions of type Co-3(W, X), (where X/Y = Mn, Fe, Ni, Pt, Cr, Al, Si, V, W, Ta, Ti, Nb, Hf, Zr and Mo) were studied. Effect of alloying on equilibrium lattice parameters and ground state energies was used to calculate Vegard's coefficients and site preference related data. The effect of alloying on the stability of the L1(2) structure vis a vis other geometrically close packed ordered structures was also studied for a range of Co3X compounds. Results suggest that the penchant of element for the W sublattice can be predicted by comparing heats of formation of Co3X in different structures.
Resumo:
Oceanic intraplate earthquakes are known to occur either on active ridge-transform structures or by reactivation of their inactive counterparts, generally referred to as fossil ridges or transforms. The Indian Ocean, one of the most active oceanic intraplate regions, has generated large earthquakes associated with both these types of structures. The moderate earthquake that occurred on 21 May 2014 (M-w 6.1) in the northern Bay of Bengal followed an alternate mechanism, as it showed no clear association either with active or extinct ridge-transform structures. Its focal depth of >50 km is uncommon but not improbable, given the similar to 90 Ma age of the ocean floor with 12-km-thick overlying sediments. No tectonic features have been mapped in the near vicinity of its epicenter, the closest being the 85 degrees E ridge, located similar to 100 km to its west, hitherto regarded as seismically inactive. The few earthquakes that have occurred here in the past are clustered around its southern or northern limits, and a few are located midway, at around 10 degrees N. The 2014 earthquake, sourced close to the northern cluster, seems to be associated with a northwest-southeast-oriented fracture, located on the eastern flanks of the 85 degrees E ridge. If this causal association is possible, we believe that reactivation of fossil hotspot trails could be considered as another mechanism for oceanic intraplate seismicity.
Resumo:
Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO2 has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO2. Hence the role of substitution doping in stabilizing the competing phases of VO2 in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO2. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO2 can be tuned by substitutional doping of VO2 with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO2 and W- doped VO2 as thin films. XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VO2 thin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size similar to 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO2, the transition temperature has reduced from 68 degrees C to 25 degrees C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration. (c) 2016 Author(s).
Resumo:
The kinetic studies of the acrylic octadecyl ester and styrene polymerization in microemulsion systems, (1) cetyl pyridine bromide (CPDB)/t-butanol/styrene/water; (2) CPDB/t-butanol/toluene + acrylic octadecyl ester (1:1, w/v)/ water; (3) cetyl pyridine bromide/styrene/formamide, were made by using dynamic laser light scattering techniques (DLS). The mechanisms of nucleation of latex particles were discussed. The most possible nucleation location of the styrene and acrylic octadecyl ester microlatex particles in aqueous microemulsion system is in aqueous phase via homogeneous nucleation. Meanwhile, parts of microlatex particles are possibly produced via swollen micelles (microemulsions) and monomer droplets nucleation. On the other hand, the most possible nucleation location of the styrene microlatex particles in nonaqueous microemulsion system is inside monomer droplets. The relationship between the amount of monomer and the size of microlatex was also investigated. It has been found that the size of microlatex particles could be controlled by changing the amount of monomer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
研究了WO型乳化液的表面张力,压力雾化喷嘴的乳化液雾化特性与乳化液的组分、乳化剂的黏度以及喷油压力的关系.实验结果表明:乳化液的表面张力接近柴油,但喷雾滴径均大于柴油,而且喷嘴的启喷压力、乳化液组分和乳化剂黏度对乳化液平均滴径均有显著影响.随着启喷压力升高,喷雾滴径明显减小;若启喷压力相同,随着乳化液中水相含量增加(不高于50%),乳化液喷雾滴径随之增加;采用高黏度、低HLB值乳化剂配制的乳化液的喷雾滴径相对较大;内相界面特性和界面上的乳化剂会对滴径分布有重要影响.
Resumo:
The laser-solidified microstructural and compositional characterization and phase evolution during tempering at 963 K were investigated using an analytical transmission electron microscope with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The processing parameters were 16 mm/s beam scanning speed, 3 mm beam diameter. 2 kW laser power, and 0.3 g/s feed rate. The coating was metallurgically bonded to the substrate, with a maximum thickness of 730 mu m, a microhardness of about 860 Hv and a volumetric dilution ratio of about 6%. Microanalyses revealed that the cladded coating possessed the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisted of gamma-austenite and M7C3 carbide. The gamma-austenite was a non-equilibrium phase with extended solid solution of alloying elements and a great deal of defect structures, i.e. a high density of dislocations, twins, and stacking faults existed in gamma phase. During high temperature aging, in situ carbide transformation occurred of M7C3 to M23C6 and M6C. The precipitation of M23C6, MC and M2C carbides from austenite was also observed.
Resumo:
本文以对热工模具进行失效分析的基础上,利用激光熔覆技术,在5CrMnMo基础上设计并制备强韧兼备的抗高温磨损涂层。