996 resultados para Viral integration
Resumo:
The Australian Civil Aviation Safety Authority (CASA) currently lists more than 100 separate entities or organisations which maintain a UAS Operator Certificate (UOC) [1]. Approved operations are overwhelmingly a permutation of aerial photography, surveillance, survey or spotting and predominantly, are restricted to Visual Line of Sight (VLOS) operations, below 400 feet, and not within 3 NM of an aerodrome. However, demand is increasing for a Remote Piloted Aerial System (RPAS) regulatory regime which facilitates more expansive operations, in particular unsegregated, Beyond Visual Line of Sight (BVLOS) operations. Despite this demand, there is national and international apprehension regarding the necessary levels of airworthiness and operational regulation required to maintain safety and minimise the risk associated with unsegregated operations. Fundamental to addressing these legitimate concerns will be the mechanisms that underpin safe separation and collision avoidance. Whilst a large body of research has been dedicated to investigating on-board, Sense and Avoid (SAA) technology necessary to meet this challenge, this paper focuses on the contribution of the NAS to separation assurance, and how it will support, as well as complicate RPAS integration. The paper collates and presents key, but historically disparate, threads of Australian RPAS and NAS related information, and distils it with a filter focused on minimising RPAS collision risk. Our ongoing effort is motivated by the need to better understand the separation assurance contribution provided by the NAS layers, in the first instance, and subsequently employ this information to identify scenarios where the coincident collision risk is demonstrably low, providing legitimate substantiation for concessions on equipage and airworthiness standards.
Resumo:
The value of information technology (IT) is often realized when continuously being used after users’ initial acceptance. However, previous research on continuing IT usage is limited for dismissing the importance of mental goals in directing users’ behaviors and for inadequately accommodating the group context of users. This in-progress paper offers a synthesis of several literature to conceptualize continuing IT usage as multilevel constructs and to view IT usage behavior as directed and energized by a set of mental goals. Drawing from the self-regulation theory in the social psychology, this paper proposes a process model, positioning continuing IT usage as multiple-goal pursuit. An agent-based modeling approach is suggested to further explore causal and analytical implications of the proposed process model.
Resumo:
Supercapacitors are increasingly used as short term energy storage elements in distributed generation systems. The traditional approach in integrating them to the main system is the use of interfacing dc-dc converters which introduce additional costs and power losses. This paper therefore, presents a novel direct integration scheme for supercapacitors and thereby eliminates associated costs and power losses of interfacing converters. The idea is simply to replace ordinary capacitors of three-level flying-capacitor rectifiers with supercapacitors and operate them under variable voltage conditions. An analysis on the reduction of power losses by the proposed system is presented. Furthermore, supercapacitor sizing and implementation issues such as effects of the variable voltage operation and resistive behavior of supercapacitors at high frequencies are also discussed. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term power fluctuations in wind generation system.
Resumo:
Battery/supercapacitor hybrid energy storage systems have been gaining popularity in electric vehicles due to their excellent power and energy performances. Conventional designs of such systems require interfacing dc-dc converters. These additional dc-dc converters increase power loss, complexity, weight and cost. Therefore, this paper proposes a new direct integration scheme for battery/supercapacitor hybrid energy storage systems using a double ended inverter system. This unique approach eliminates the need for interfacing converters and thus it is free from aforementioned drawbacks. Furthermore, the proposed system offers seven operating modes to improve the effective use of available energy in a typical drive cycle of a hybrid electric vehicle. Simulation results are presented to verify the efficacy of the proposed system and control techniques.
Resumo:
Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.
Resumo:
This paper presents a grid-side inverter based supercapacitor direct integration scheme for wind power systems. The inverter used in this study consists of a conventional two-level inverter and three H-bridge modules. Three supercapacitor banks are directly connected to the dc-links of H-bridge modules. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, for the maximum utilization of super capacitors their voltages should be allowed to vary. As a result of this variable voltage space vectors of the hybrid inverter get distributed unevenly. To handle this issue, a modified PWM method and a space vector modulation method are proposed and they can generate undistorted current even in the presence of unevenly distributed space vectors. A supercapacitor voltage balancing method is also presented in this paper. Simulation results are presented to validate the efficacy of the proposed scheme, modulation methods and control techniques.
Resumo:
In project management today, sustainability considerations are becoming increasingly necessary as an inclusion into project discovery, design and delivery phase methodologies. However, sustainability cannot always be tacked on to traditional project management approaches and still achieve the best project outcomes. Throw in the particular considerations for a culturally specific project, as for Aboriginal and Torres Strait Islander people, and the traditional project management approach is at risk of not meeting the needs of stakeholders or their engagement. In this presentation, we will briefly demonstrate how from beginning with sustainability considerations and integrating both project management principles and Aboriginal and Torres Strait Islander va lu es that QUT's Oodgeroo Unit is actioning a 'means to ends' integration approach for stakeholder engagement in two national Aboriginal and Torres Strait Islander projects. The iterative discovery and design of the federally Higher Education Participation and Partnerships Program (HEPPP) funded Aboriginal and Torres Strait Islander Higher Education Social Marketing Strategy (Strategy) and the Aboriginal and Torres Strait Islander Higher Education Portal (Portal) projects is being informed through a 'means' to 'ends' user- and design -led project management approach for inclusivity, visioning, and participation informing these projects for susta inable national deliverables. This approach draws upon the integration of Sustain ability Development Pillars and Project Management Pillars with the contextual lens of our proposed Aboriginal and Torres Strait Islander Pillars as the underpinning methodology of the Strategy and Portal Project's Communication and Collaboration Plan and approach with stakeholders. These th ree Pillars are integrated further through participatory consideration and inclu sion of comparative models: Daly's Sustainability Triangle, Walker's Object Design, Maslow's Hierarchy of Human Needs, Olsen's Four Layers of Communication,Project Management In stitute's (PMI's) Integrated Framework for Organisational Project Management, with the Aborig inal and Torres Strait Islander six core research ethics values. This presentation invites participants to join us in envisioning the 'ultimate means' of Environment, Del ivery and Sovereignty, through Economy, Design and Self-determination to the 'ultimate ends' of Social, Discove ry and Cultural Safety principles through stakeholder engagement.
Resumo:
This paper presents a new direct integration scheme for supercapacitors that are used to mitigate short term power fluctuations in wind power systems. The proposed scheme uses the popular dual inverter topology for grid connection as well as interfacing a supercapacitor bank. The dual inverter system is formed by cascading two 2-level inverters named as the “main inverter” and the “auxiliary inverter”. The main inverter is powered by the rectified output of a wind turbine coupled permanent magnet synchronous generator. The auxiliary inverter is directly connected to a super capacitor bank. This approach eliminates the need for an interfacing dc-dc converter for the supercapacitor bank and thus improves the overall efficiency. A detailed analysis on the effects of non-integer dynamically changing voltage ratio is presented. The concept of integrated boost rectifier is used to carry out the Maximum Power Point Tracking (MPPT) of the wind turbine generator. Another novel feature of this paper is the power reference adjuster which effectively manages capacitor charging and discharging at extreme conditions. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.
Resumo:
Achieving business and IT integration is strategic goal for many organisations – it has almost become the ‘Holy Grail’ of organisational success. In this environment Enterprise Resource Planning (ERP) packages have become the defacto option for addressing this issue. Integration has come to mean adopting ERP, through configuration and without customization, but this all or nothing approach has proved difficult for many organisations. In part 1 of a 2 part update we provide evidence from the field that suggests that whilst costly, if managed appropriately, customization can have value in aiding organisational integration efforts. In part 2, we discuss in more detail the benefits and pitfalls involved in enacting a non-standard based integration strategy.
Resumo:
In part 1 of this update, we put forward the argument that integration in ERP based environments can be achieved in ways other than adopting a software configuration only approach. We drew on evidence from two large ERP implementations to show how, despite the cost implications, some customization, if carefully managed, could prove helpful. In this, the final part of the update, we discuss the benefits, and potential pitfalls, involved in enacting a non-standard based integration strategy. This requires attention to a) broadening the integration definition; b) bringing legacy practices forward and c) developing a customization based integration strategy.
Resumo:
Knowledge Integration (KI) is one of the major aspects driving innovation within an organisation. In this paper, we attempt to develop a better understanding of responses to the challenges of knowledge integration within the innovation process in technology-based firms. Using four technology-based Australian firms, we investigated how knowledge integration may be managed within the context of innovation in technology firms. Previous research highlights the role of four KI tasks that affect the innovation capability within technology-oriented firms, namely team building capability, capturing tacit knowledge, role of Knowledge Management (KM) systems and technological systemic integration. Our findings indicate that in addition to these four tasks, a strategic approach to integrating knowledge for innovation, as well as leadership and management, are essential to achieving effective KI across multiple levels of engagement. Our findings also offer practical insights into how knowledge can be integrated within innovation process, with specific implications for managers.
Resumo:
While past knowledge-based approaches to service innovation have emphasized the role of knowledge integration in the delivery of customer-focused solutions, these approaches do not adequately address the complexities inherent in knowledge acquisition and integration in project-oriented firms. Adopting a dynamic capability framework and building on knowledge-based approaches to innovation, the current study examines how the interplay of learning capabilities and knowledge integration capability impacts service innovation and sustained competitive advantage. This two-stage multi-sample study finds that entrepreneurial project-oriented service firms in their quest for competitive advantage through greater innovation invest in knowledge acquisition and integration capabilities. Implications for theory and practice are discussed and directions for future research provided.
Resumo:
Path integration is a process with which navigators derive their current position and orientation by integrating self-motion signals along a locomotion trajectory. It has been suggested that path integration becomes disproportionately erroneous when the trajectory crosses itself. However, there is a possibility that this previous finding was confounded by effects of the length of a traveled path and the amount of turns experienced along the path, two factors that are known to affect path integration performance. The present study was designed to investigate whether the crossover of a locomotion trajectory truly increases errors of path integration. In an experiment, blindfolded human navigators were guided along four paths that varied in their lengths and turns, and attempted to walk directly back to the beginning of the paths. Only one of the four paths contained a crossover. Results showed that errors yielded from the path containing the crossover were not always larger than those observed in other paths, and the errors were attributed solely to the effects of longer path lengths or greater degrees of turns. These results demonstrated that path crossover does not always cause significant disruption in path integration processes. Implications of the present findings for models of path integration are discussed.