970 resultados para Vegetation change


Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): High resolution paleobotanical records provide sufficient detail to correlate events regionally. Once correlated events can be examined in tandem to determine the underlying inputs that fashioned them. Several localities in the Great Basin have paleobotanical records of sufficient detail to generate regional reconstructions of vegetation changes for the last 2 ka and provide conclusions as to the climates that caused them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successions of lake ecosystems from clear-water, macrophyte-rich conditions into turbid states with abundant phytoplankton have taken place in many shallow lakes in China. However, little is know about the change of carbon fluxes in lakes during such processes. We conducted a case study in Lake Biandantang to investigate the change of carbon fluxes during such a regime shift. Dissolved aquatic carbon and gaseous carbon (methane (CH4) and carbon dioxide (CO2)) across air-water interface in three sites with different vegetation covers and compositions were studied and compared. CH4 emissions from three sites were 0.62 +/- 0.36, 0.70 +/- 0.36, and 1.31 +/- 0.57 mg m(-2) h(-1), respectively. Correlation analysis showed that macrophytes, rather than phytoplankton, directly positively affected CH4 emission. CO2 fluxes of three sites in Lake Biandantang were significantly different, and the average values were 77.8 +/- 20.4, 52.2 +/- 14.1 and 3.6 +/- 26.8 mg m(-2) h(-1), respectively. There were an evident trend that the larger macrophyte biomass, the lower CO2 emissions. Correlation analysis showed that in different sites, dominant plant controlled CO2 flux across air-water interface. In a year cycle, the percents of gaseous carbon release from lake accounting for net primary production were significantly different (from 39.3% to 2.8%), indicating that with the decline of macrophytes and regime shift, the lake will be a larger carbon source to the atmosphere. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km x 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grattan, John and Pyatt, Brian. 'Acid damage to vegetation following the laki fissure eruption in 1783 - an historical review' The Science of the Total Environment. 26 August 1993. 151 pgs 241-247

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charman, D. West, S. Kelly, A. Grattan, J. environmental change and Tephra Deposition: the strath of Kildonan, Northern Scotland. Journal of Archaeological Science. 1995. 22 pp 799-809

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dennis, P., Aspinall, R. J., Gordon, I. J. (2002). Spatial distribution of upland beetles in relation to landform vegetation and grazing management. Basic and Applied Ecology, 3 (2), 183?193. Sponsorship: SEERAD RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a prominent form of land use across much of upland Europe, extensive livestock grazing may hold the key to the sustainable management of these landscapes. Recent agricultural policy reform, however, has resulted in a decline in upland sheep numbers, prompting concern for the biodiversity value of these areas. This study quantifies the effects of varying levels of grazing management on plant, ground beetle and breeding bird diversity and assemblage in the uplands and lowlands of hill sheep farms in County Kerry, Ireland. Farms represent a continuum of light to heavy grazing, measured using a series of field indicators across several habitats, such as the internationally important blanket bog, home to the ground beetle, Carabus clatratus. Linear mixed effects modelling and non-metric multidimensional scaling are employed to disentangle the most influential management and environmental factors. Grazing state may be determined by the presence of Molinia caerulea or Nardus stricta, and variables such as % traditional ewes, % vegetation litter and % scrub prove valuable indicators of diversity. Measures of ecosystem functioning, e.g. plant biomass (nutrient cycling) and % vegetation cover (erosion rates) are influenced by plant diversity, which is influenced by grazing management. Levels of the ecosystem service, soil organic carbon, vary with ground beetle abundance and diversity, potentially influencing carbon sequestration and thereby climate change. The majority of species from all three taxa are found in the lowlands, with the exception of birds such as meadow pipit and skylark. The scale of measurement should be determined by the size and mobility of the species in question. The challenge is to manage these high nature value landscapes using agri-environment schemes which enhance biodiversity by maintaining structural heterogeneity across a range of scales, altitudes and habitats whilst integrating the decisions of people living and working in these marginal areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorus (P) is a crucial element for life and therefore for maintaining ecosystem productivity. Its local availability to the terrestrial biosphere results from the interaction between climate, tectonic uplift, atmospheric transport, and biotic cycling. Here we present a mathematical model that describes the terrestrial P-cycle in a simple but comprehensive way. The resulting dynamical system can be solved analytically for steady-state conditions, allowing us to test the sensitivity of the P-availability to the key parameters and processes. Given constant inputs, we find that humid ecosystems exhibit lower P availability due to higher runoff and losses, and that tectonic uplift is a fundamental constraint. In particular, we find that in humid ecosystems the biotic cycling seem essential to maintain long-term P-availability. The time-dependent P dynamics for the Franz Josef and Hawaii chronosequences show how tectonic uplift is an important constraint on ecosystem productivity, while hydroclimatic conditions control the P-losses and speed towards steady-state. The model also helps describe how, with limited uplift and atmospheric input, as in the case of the Amazon Basin, ecosystems must rely on mechanisms that enhance P-availability and retention. Our novel model has a limited number of parameters and can be easily integrated into global climate models to provide a representation of the response of the terrestrial biosphere to global change. © 2010 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate in the past 4 decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into the Miyun Reservoir during 1961–2008. Different from previous studies on this watershed, we used a comprehensive approach to quantify the timing of changes in hydrology and associated environmental variables using the long-term historical hydrometeorology and remote-sensing-based land use records. To effectively quantify the different impacts of the climate variation and land use change on streamflow during different sub-periods, an annual water balance model (AWB), the climate elasticity model (CEM), and a rainfall–runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant (p  <  0.01) decrease in annual streamflow, a significant positive trend in annual potential evapotranspiration (p  <  0.01), and an insignificant (p  >  0.1) negative trend in annual precipitation during 1961–2008. We identified two streamflow breakpoints, 1983 and 1999, by the sequential Mann–Kendall test and double-mass curve. Climate variability alone did not explain the decrease in inflow to the Miyun Reservoir. Reduction of water yield was closely related to increase in actual evapotranspiration due to the expansion of forestland and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. The contribution to the observed streamflow decline from land use change fell from 64–92 % during 1984–1999 to 36–58 % during 2000–2008, whereas the contribution from climate variation climbed from 8–36 % during the 1984–1999 to 42–64 % during 2000–2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in streamflow reduction in the most recent decade (i.e., 2000s). We conclude that future climate change and variability will further challenge the water supply capacity of the Miyun Reservoir to meet water demand. A comprehensive watershed management strategy needs to consider the climate variations besides vegetation management in the study basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollen, microscopic charcoal, palaeohydrological and dendrochronological analyses are applied to a radiocarbon and tephrochronologically dated mid Holocene (ca. 8500–3000 cal B.P.) peat sequence with abundant fossil Pinus (pine) wood. The Pinus populations on peat fluctuated considerably over the period in question. Colonisation by Pinus from ca. 7900–7600 cal B.P. appears to have had no specific environmental trigger; it was probably determined by the rate of migration from particular populations. The second phase, at ca. 5000–4400 cal B.P., was facilitated by anthropogenic interference that reduced competition from other trees. The pollen record shows two Pinus declines. The first at ca. 6200–5500 cal B.P. was caused by a series of rapid and frequent climatic shifts. The second, the so-called pine decline, was very gradual (ca. 4200–3300 cal B.P.) at Loch Farlary and may not have been related to climate change as is often supposed. Low intensity but sustained grazing pressures were more important. Throughout the mid Holocene, the frequency and intensity of burning in these open Pinus–Calluna woods were probably highly sensitive to hydrological (climatic) change. Axe marks on several trees are related to the mid to late Bronze Age, i.e., long after the trees had died.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of a fossil Coleoptera (beetle) fauna from a fen edge sequence from Hatfield Moors, Humberhead Levels, are presented. Mire ontogeny inferred from this location and others are discussed, particularly in the light of previous palynological and plant macrofossil investigations. Peat initiation across most of the site centres around 3000 cal BC, characterised by a Calluna-Eriophorum heath with areas of Pinus-Betula woodland. The onset of peat accumulation on the southern margins of the site was delayed until 1520-1390 cal BC and appears to overlap closely with a recurrence surface at a pollen site (HAT 2) studied by Brian Smith (1985, 2002) dated to 1610-1440 cal BC, suggesting that increased surface wetness may have caused mire expansion at this time. The faunas illustrate the transition from eutrophic and mesotrophic fen to ombrotrophic raised mire, although the significance of both Pinus- and Calluna-indicating species through the sequence suggests that heath habitats may have continued to be important. Elsewhere, this earlier phase of rich fen is lacking and mesotrophic mire developed immediately above nutrient poor sands, with ombrotrophic conditions indicated soon after. Correspondence analysis of the faunas provides valuable insights into the importance of sandy heath habitats on Hatfield Moors. The continuing influence of the underlying coversands suggests these may have been instrumental in mire ontogeny. The research highlights the usefulness of using Coleoptera to assess mire ontogeny, fluctuations in site hydrology and vegetation cover, particularly when used in conjunction with other peatland proxies. The significance of a suite of extinct beetle species is discussed with reference to forest history and climate change.