967 resultados para Vascular diseases
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Enfermagem (mestrado profissional) - FMB
Resumo:
Silicosis, a common type of pneumoconiosis, is an occupational lung disease caused by inhalation of silica dust often with mining activity and thus reaches the miners. The fine and ultrafine silica particles deposited in the alveolar epithelium may lead to the development of progressive massive fibrosis. An increased reactive oxygen species (ROS) production has been proposed to explain the mechanism for induction of pulmonary fibrosis in silicosis. In this situation, alveolar macrophages are activated to phagocytes silica particles deposited in the alveoli. The activated macrophages secrete large amounts of ROS that in turn induce synthesis of fibrotic factors. In addition, the activity of antioxidant enzymes is impaired, which results in increased lipid peroxidation, as well as generating a local inflammatory process. Diffuse pulmonary fibrosis progresses with interstitial collagen deposition. Interstitial collagen overlies small pulmonary arteries and arterioles and thus it is associated with pulmonary hypertension in pulmonary fibrotic diseases. In addition, cytokines and silica particles passing through the respiratory membrane can reach the bloodstream. In this context, the increase in the generation of ROS in the circulation may lead to a reduction in the bioavailability of nitric oxide, an important endothelium-derived relaxing factor. A deficiency in the nitric oxide bioavailability can result in vascular endothelial dysfunction. Moreover, pro-inflammatory cytokines could contribute to the impairment of endothelial function. In the airways, pro-inflammatory cytokines can reduce the smooth muscle responsiveness to β- adrenergic agonists as isoproterenol. Thus, the aim of this study was to evaluate the effect of silica dust instillation in the function of the pulmonary artery, aorta and trachea of rats with acute silicosis. For this purpose, male Wistar rats were anesthetized... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aims: Cytokines interfere with signaling pathways and mediators of vascular contraction. Endothelin-1 (ET-1) plays a major role on vascular dysfunction in conditions characterized by increased circulating levels of adipokines. In the present study we tested the hypothesis that the adipokine chemerin increases vascular contractile responses via activation of ET-1/ET-1 receptors-mediated pathways. Main methods: Male, 10-12 week-old Wistar rats were used. Endothelium-intact and endothelium-denuded aortic rings were incubated with chemerin (0.5 ng/mL or 5 ng/mL, for 1 or 24 h), and isometric contraction was recorded. Protein expression was determined by Western blotting. Key findings: Constrictor responses to phenylephrine (PE) and ET-1 were increased in vessels treated for 1 h with chemerin. Chemerin incubation for 24 h decreased PE contractile response whereas it increased the sensitivity to ET-1. Endothelium removal significantly potentiated chemerin effects on vascular contractile responses to PE and ET-1. Incubation with either an ERK1/2 inhibitor (PD98059) or ETA antagonist (BQ123) abolished chemerin effects on PE- and ET-1-induced vasoconstriction. Phosphorylation of MEK1/2 and ERK1/2 was significantly increased in vessels treated with chemerin for 1 and 24 h. Phosphorylation of these proteins was further increased in vessels incubated with ET-1 plus chemerin. ET-1 increased MEK1/2, ERK1/2 and MKP1 protein expression to values observed in vessels treated with chemerin. Significance: Chemerin increases contractile responses to PE and ET-1 via ERK1/2 activation. Our study contributes to a better understanding of the mechanisms by which the adipose tissue affects vascular function and, consequently, the vascular alterations present in obesity and related diseases. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Activation of TLRs (Toll-like receptors) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of CVDs (cardiovascular diseases). Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study, we hypothesize that inhibition of TLR4 decreases BP (blood pressure) and improves vascular contractility in resistance arteries from SHR (spontaneously hypertensive rats). TLR4 protein expression in mesenteric resistance arteries was higher in 15-week-old SHR than in age-matched Wistar controls or in 5-week-old SHR. To decrease the activation of TLR4, 15-week-old SHR and Wistar rats were treated with anti-TLR4 (anti-TLR4 antibody) or non-specific IgG control antibody for 15 days (1 mu g per day, intraperitoneal). Treatment with anti-TLR4 decreased MAP (mean arterial pressure) as well as TLR4 protein expression in mesenteric resistance arteries and IL-6 (interleukin 6) serum levels from SHR when compared with SHR treated with IgG. No changes in these parameters were found in treated Wistar control rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to NA (noradrenaline) compared with IgG-treated SHR. Inhibition of COX (cyclo-oxygenase)-1 and COX-2, enzymes related to inflammatory pathways, decreased NA responses only in mesenteric resistance arteries of SHR treated with IgG. COX-2 expression and TXA(2) (thromboxane A(2)) release were decreased in SHR treated with anti-TLR4 compared with IgG-treated SHR. Our results suggest that TLR4 activation contributes to increased BP, low-grade inflammation and plays a role in the augmented vascular contractility displayed by SHR.
Resumo:
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 +/- 17.3 versus 209 +/- 10.9 mm Hg in hypertensive controls, p < 0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p < 0.05). Doxycycline also decreased hypertension-induced oxidative stress (p <= 0.05), higher MMP activity (p < 0.01) and improved NO levels in aortic endothelial cells (p < 0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract: Background Pancreatic cancer is a rare tumor with an extremely low survival rate. Its known risk factors include the chronic use of tobacco and excessive alcohol consumption and the presence of chronic inflammatory diseases, such as pancreatitis and type 2 diabetes. Angiogenesis and lymphangiogenesis, which have been the focus of recent research, are considered prognostic factors for cancer development. Knowing the angiogenic and lymphangiogenic profiles of a tumor may provide new insights for designing treatments according to the different properties of the tumor. The aim of this study was to evaluate the density of blood and lymphatic vessels, and the expression of VEGF-A, in pancreatic adenocarcinomas, as well as the relationship between blood and lymphatic vascular density and the prognostically important clinical-pathological features of pancreatic tumors. Methods Paraffin blocks containing tumor samples from 100 patients who were diagnosed with pancreatic cancer between 1990 and 2010 were used to construct a tissue microarray. VEGF expression was assessed in these samples by immunohistochemistry. To assess the lymphatic and vascular properties of the tumors, 63 cases that contained sufficient material were sectioned routinely. The sections were then stained with the D2-40 antibody to identify the lymphatic vessels and with a CD34 antibody to identify the blood vessels. The vessels were counted individually with the Leica Application Suite v4 program. All statistical analyses were performed using SPSS 18.0 (Chicago, IL, USA) software, and p values ≤ 0.05 were considered significant. Results In the Cox regression analysis, advanced age (p=0.03) and a history of type 2 diabetes (p=0.014) or chronic pancreatitis (p=0.02) were shown to be prognostic factors for pancreatic cancer. Blood vessel density (BVD) had no relationship with clinical-pathological features or death. Lymphatic vessel density (LVD) was inversely correlated with death (p=0.002), and by Kaplan-Meyer survival analysis, we found a significant association between low LVD (p=0.021), VEGF expression (p=0.023) and low patient survival. Conclusions Pancreatic carcinogenesis is related to a history of chronic inflammatory processes, such as type 2 diabetes and chronic pancreatitis. In pancreatic cancer development, lymphangiogenesis can be considered an early event that enables the dissemination of metastases. VEGF expression and low LVD can be considered as poor prognostic factors as tumors with this profile are fast growing and highly aggressive. Virtual slides. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5113892881028514
Resumo:
Ultrasonography (US) is an essential imaging tool for identifying abnormalities of the liver parenchyma, biliary tract and vascular system. US has replaced radiography as the initial imaging procedure in screening for liver disease in small animals. There are few reports of the use of conventional and helical computed tomography (CT) to assess canine or feline parenchymal and neoplastic liver disease and biliary disorders. In human medicine the development of multidetector- row helical computed tomography (MDCT), with its superior spatial and temporal resolution, has resulted in improved detection and characterization of diffuse and focal liver lesions. The increased availability of MDCT in veterinary practice provides incentive to develop MDCT protocols for liver imaging in small animals. The purpose of this study is to assess the rule of MDCT in the characterization of hepatobiliary diseases in small animals; and to compare this method with conventional US. Candidates for this prospective study were 175 consecutive patients (dogs and cats) referred for evaluation of hepatobiliary disease. The patients underwent liver US and MDCT. Percutaneous needle biopsy was performed on all liver lesions or alterations encountered. As for gallbladder, histopatological evaluation was obtained from cholecystectomy specimens. Ultrasonographic findings in this study agreed well with those of previous reports. A protocol for dual-phase liver MDCT in small animals has been described. MDCT findings in parenchymal disorders of the liver, hepatic neoplasia and biliary disorders are here first described in dogs and cats and compared with the corresponding features in human medicine. The ability of MDCT in detection and characterization of hepatobiliary diseases in small animals is overall superior to conventional US. Ultrasonography and MDCT scanning, however, play complementary rules in the evaluation of these diseases. Many conditions have distinctive imaging features that may permit diagnosis. In most instances biopsy is required for definitive diagnosis.
Resumo:
Glukokortikoide (GCs) stellen wichtige Hormone in der Regulation der metabolischen Homöostase dar. Synthetische GCs, wie Dexamethasone (DEX), spielen eine essentielle Rolle in der Behandlung inflammatorischer Krankheiten. Jedoch sind unter einer Dexamethason-Therapie zahlreiche Nebenwirkungen bekannt, so z.B. auch die Entwicklung einer Hypertonie, in deren Pathogenese oxidativer Stress eine entscheidende Rolle spielt. Obwohl sich in den vergangenen Jahren zahlreiche Studien zum Ziel setzten die GC-induzierte Hypertonie (GC-HT) aufzuklären, sind die genauen Mechanismen bis heute unklar. Eine erhöhte Expression von NADPH Oxidasen (Nox) und eine Entkopplung der endothelialen NO Synthase (eNOS), die Hauptquellen reaktiver Sauerstoffspezies (ROS) im vaskulären System, tragen maßgeblich zur Pathogenese kardiovaskulärer Erkrankungen bei. Daher ist eine Beteiligung dieser Enzyme in GC-induziertem oxidativen Stress sehr wahrscheinlich. Folglich wurde die Hypothese aufgestellt, dass NADPH Oxidasen und eine entkoppelte eNOS die vielversprechendsten unter den zahlreichen involvierten pro- und anti-oxidativen Enzymen sind. Mit Fokus auf die oben genannten Systeme wurde in der vorliegenden Studie der Effekt von DEX mit Hilfe von in vivo (WKY Ratten) ebenso wie in vitro Experimenten (A7r5 und EA.hy 926 Zellen) untersucht. Dabei zeigte sich, dass Nox1, Nox4 und p22phox durch DEX unterschiedlich reguliert wurden. Nox1 wurde hoch-, Nox4 hingegen herunterreguliert, während p22phox unverändert blieb. Die Modufikation schien hierbei auf transkriptioneller und post-transkriptioneller Ebene stattzufinden. Durch die gegensätzliche Regulation von Nox1 und Nox4 bleibt die Nettowirkung der verschiedenen Nox Isoformen unklar. Immer mehr Studien bringen vaskulären oxidativen Stress mit der Pathogenese einer GC-HT in Zusammenhang, welche letztendlich zu einer verminderten Bioverfügbarkeit von Stickstoffmonoxid (NO) führt. Durch die eNOS produziertes NO stellt einen essentiellen Schutzfaktor der Blutgefäße dar. Eine verminderte NO-Bioverfügbarkeit könnte die Folge einer eNOS-Entkopplung darstellen, ausgelöst durch oxidativen Stress. Da die Verfügbarkeit von Tetrahydrobiopterin (BH4) entscheident ist für die Aktivität und enzymatische Kopplung der eNOS, beschäftigt sich die vorliegende Arbeit mit GC-induzierten Veränderungen in der BH4-Versorgung. Die Behandlung von EA.hy 926 Zellen mit DEX führte zu einer zeit- und konzentrationsabhängigen Herunterregulation von eNOS auf mRNA- und Proteinebene. Gleichzeitig wurde die Phosphorylierung an Serine1177 vermindert. Als maßgeblicher “Kopplungs-Schalter” kann BH4 endogen über zwei verschiedene Signalwege synthetisiert werden, welche durch die Enzyme GCH1 und DHFR reguliert werden. DEX führte zu einer zeit- und konzentrationsabhängigen Herunterregulation von BH4, BH2 und Biopterin, wobei ebenso das BH4 / BH2 -Verhältnis vermindert wurde. Beide Enzyme, GCH1 genauso wie DHFR, wurden auf mRNA- und Proteinebene herunterreguliert, was auf einen Effekt von GCs auf beide rnBH4-produzierenden Signalwege schließen lässt. Nach Behandlung mit DEX wurde die Produktion von NO in Endothelzellen maßgeblich vermindert. In ROS-Messungen zeigte sich eine Tendenz hin zu einer eNOS-Entkopplung, jedoch war es mit unserem experimentellen Aufbau nicht möglich, diese endgültig zu beweisen.rnZusammenfassend lässt sich sagen, dass die Behandlung mit GCs zu Veränderungen in beiden untersuchten Systemen, den NADPH Oxidasen ebenso wie dem eNOS-NO System, führte. DEX erhöhte die Expression von Nox1 in glatten Muskelzellen und reduzierte die Nox4-Expression in Endothelzellen. Gleichzeitig verminderte DEX die Verfügbarkeit von BH4 und inhibierte die Phosphorylierung / Aktivität von eNOS. Mithilfe weiterer Studien muss die endgültige Beteiligung von NADPH Oxidasen und einer eNOS-Entkopplung an oxidativem Stress in GC-HT abschließend aufgeklärt werden.rn