940 resultados para Utilities
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
The concept of Six Sigma was initiated in the 1980s by Motorola. Since then it has been implemented in several manufacturing and service organizations. In case of services, health care and finance were major beneficiaries till now. The application of Six Sigma is gradually picking up in other services like; call centers, utilities and public services. This paper provides empirical evidence on Six Sigma implementation in service industries in Singapore. By using a sample size of 50 service organizations (10 responses are from organizations which have implemented Six Sigma), the paper helps in understanding the status of Six Sigma in service organizations in Singapore. The findings confirm the inclusion of critical success factors, critical to quality characteristics, tools and key performance indicators as observed from the literature. The revelation of “not relevant” as a reason for not implementing Six Sigma shows the need for understanding specific requirements of service organizations before its application.
Resumo:
The next-generation of service-oriented architecture (SOA) needs to scale for flexible service consumption, beyond organizational and application boundaries, into communities, ecosystems and business networks. In wider and, ultimately, global settings, new capabilities are needed so that business partners can efficiently and reliably enable, adapt and expose services. Those services can then be discovered, ordered, consumed, metered and paid for, through new applications and opportunities, driven by third-parties in the global “village”. This trend is already underway, in different ways, through different early adopter market segments. This paper proposes an architectural strategy for the provisioning and delivery of services in communities, ecosystems and business networks – a Service Delivery Framework (SDF). The SDF is intended to support multiple industries and deployments where a SOA platform is needed for collaborating partners and diverse consumers. Specifically, it is envisaged that the SDF allows providers to publish their services into network directories so that they can be repurposed, traded and consumed, and leveraging network utilities like B2B gateways and cloud hosting. To support these different facets of service delivery, the SDF extends the conventional service provider, service broker and service consumer of the Web Services Architecture to include service gateway, service hoster, service aggregator and service channel maker.
Resumo:
Voltage drop and rise at network peak and off–peak periods along with voltage unbalance are the major power quality problems in low voltage distribution networks. Usually, the utilities try to use adjusting the transformer tap changers as a solution for the voltage drop. They also try to distribute the loads equally as a solution for network voltage unbalance problem. On the other hand, the ever increasing energy demand, along with the necessity of cost reduction and higher reliability requirements, are driving the modern power systems towards Distributed Generation (DG) units. This can be in the form of small rooftop photovoltaic cells (PV), Plug–in Electric Vehicles (PEVs) or Micro Grids (MGs). Rooftop PVs, typically with power levels ranging from 1–5 kW installed by the householders are gaining popularity due to their financial benefits for the householders. Also PEVs will be soon emerged in residential distribution networks which behave as a huge residential load when they are being charged while in their later generation, they are also expected to support the network as small DG units which transfer the energy stored in their battery into grid. Furthermore, the MG which is a cluster of loads and several DG units such as diesel generators, PVs, fuel cells and batteries are recently introduced to distribution networks. The voltage unbalance in the network can be increased due to the uncertainties in the random connection point of the PVs and PEVs to the network, their nominal capacity and time of operation. Therefore, it is of high interest to investigate the voltage unbalance in these networks as the result of MGs, PVs and PEVs integration to low voltage networks. In addition, the network might experience non–standard voltage drop due to high penetration of PEVs, being charged at night periods, or non–standard voltage rise due to high penetration of PVs and PEVs generating electricity back into the grid in the network off–peak periods. In this thesis, a voltage unbalance sensitivity analysis and stochastic evaluation is carried out for PVs installed by the householders versus their installation point, their nominal capacity and penetration level as different uncertainties. A similar analysis is carried out for PEVs penetration in the network working in two different modes: Grid to vehicle and Vehicle to grid. Furthermore, the conventional methods are discussed for improving the voltage unbalance within these networks. This is later continued by proposing new and efficient improvement methods for voltage profile improvement at network peak and off–peak periods and voltage unbalance reduction. In addition, voltage unbalance reduction is investigated for MGs and new improvement methods are proposed and applied for the MG test bed, planned to be established at Queensland University of Technology (QUT). MATLAB and PSCAD/EMTDC simulation softwares are used for verification of the analyses and the proposals.
Resumo:
Based on the molecular dynamics (MD) simulation and the classical Euler-Bernoulli beam theory, a fundamental study of the vibrational performance of the Ag nanowire (NW) is carried out. A comprehensive analysis of the quality (Q)-factor, natural frequency, beat vibration, as well as high vibration mode is presented. Two excitation approaches, i.e., velocity excitation and displacement excitation, have been successfully implemented to achieve the vibration of NWs. Upon these two kinds of excitations, consistent results are obtained, i.e., the increase of the initial excitation amplitude will lead to a decrease to the Q-factor, and moderate plastic deformation could increase the first natural frequency. Meanwhile, the beat vibration driven by a single relatively large excitation or two uniform excitations in both two lateral directions is observed. It is concluded that the nonlinear changing trend of external energy magnitude does not necessarily mean a nonconstant Q-factor. In particular, the first order natural frequency of the Ag NW is observed to decrease with the increase of temperature. Furthermore, comparing with the predictions by Euler- Bernoulli beam theory, the MD simulation provides a larger and smaller first vibration frequencies for the clamped-clamped and clamped-free thin Ag NWs, respectively. Additionally, for thin NWs, the first order natural frequency exhibits a parabolic relationship with the excitation magnitudes. The frequencies of the higher vibration modes tend to be low in comparison to Euler-Bernoulli beam theory predictions. A combined initial excitation is proposed which is capable to drive the NW under a multi-mode vibration and arrows the coexistence of all the following low vibration modes. This work sheds lights on the better understanding of the mechanical properties of NWs and benefits the increasing utilities of NWs in diverse nano-electronic devices.
Resumo:
The growing demand of air-conditioning is one of the largest contributors to Australia’s overall electricity consumption. This has started to create peak load supply problems for some electricity utilities particularly in Queensland. This research aimed to develop consumer demand side response model to assist electricity consumers to mitigate peak demand on the electrical network. The model developed demand side response model to allow consumers to manage and control air conditioning for every period, it is called intelligent control. This research investigates optimal response of end-user toward electricity price for several cases in the near future, such as: no spike, spike and probability spike price cases. The results indicate the potential of the scheme to achieve energy savings, reducing electricity bills (costs) to the consumer and targeting best economic performance for electrical generation distribution and transmission.
Resumo:
Here we present a sequential Monte Carlo approach to Bayesian sequential design for the incorporation of model uncertainty. The methodology is demonstrated through the development and implementation of two model discrimination utilities; mutual information and total separation, but it can also be applied more generally if one has different experimental aims. A sequential Monte Carlo algorithm is run for each rival model (in parallel), and provides a convenient estimate of the marginal likelihood (of each model) given the data, which can be used for model comparison and in the evaluation of utility functions. A major benefit of this approach is that it requires very little problem specific tuning and is also computationally efficient when compared to full Markov chain Monte Carlo approaches. This research is motivated by applications in drug development and chemical engineering.
Resumo:
The IEEE Subcommittee on the Application of Probability Methods (APM) published the IEEE Reliability Test System (RTS) [1] in 1979. This system provides a consistent and generally acceptable set of data that can be used both in generation capacity and in composite system reliability evaluation [2,3]. The test system provides a basis for the comparison of results obtained by different people using different methods. Prior to its publication, there was no general agreement on either the system or the data that should be used to demonstrate or test various techniques developed to conduct reliability studies. Development of reliability assessment techniques and programs are very dependent on the intent behind the development as the experience of one power utility with their system may be quite different from that of another utility. The development and the utilization of a reliability program are, therefore, greatly influenced by the experience of a utlity and the intent of the system manager, planner and designer conducting the reliability studies. The IEEE-RTS has proved to be extremely valuable in highlighting and comparing the capabilities (or incapabilities) of programs used in reliability studies, the differences in the perception of various power utilities and the differences in the solution techniques. The IEEE-RTS contains a reasonably large power network which can be difficult to use for initial studies in an educational environment.
Resumo:
The majority of distribution utilities do not have accurate information on the constituents of their loads. This information is very useful in managing and planning the network, adequately and economically. Customer loads are normally categorized in three main sectors: 1) residential; 2) industrial; and 3) commercial. In this paper, penalized least-squares regression and Euclidean distance methods are developed for this application to identify and quantify the makeup of a feeder load with unknown sectors/subsectors. This process is done on a monthly basis to account for seasonal and other load changes. The error between the actual and estimated load profiles are used as a benchmark of accuracy. This approach has shown to be accurate in identifying customer types in unknown load profiles, and is used in cross-validation of the results and initial assumptions.
Resumo:
Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.
Resumo:
In deregulated versions of free-market electricity, producers will be free to send power along other utilities. The price of power strongly depends and fluctuates according to mutual benefit index of both supplier and consumer. In such a situation, strong interaction among utilities may cause instabilities in the system. As the frequency of market-based dispatch increases market forces tend to destabilize the stable system dynamics depending on the value of Ks/τλ(market dependent parameter) ratio. This tends to destabilize the coupled dynamics. The implementation of TCSC can effectively damp the inter area modes of oscillations of the coupled market system.
Resumo:
Metal and semiconductor nanowires (NWs) have been widely employed as the building blocks of the nanoelectromechanical systems, which usually acted a resonant beam. Recent researches reported that nanowires are often polycrystalline, which contains grain boundaries (GBs) that transect the whole nanowire into a bamboo like structure. Based on the larger-scale molecular dynamics (MD) simulations, a comprehensive investigation of the influence from grain boundaries on the vibrational properties of doubly clamped Ag NWs is conducted. It is found that, the presence of grain boundary will result in significant energy dissipation during the resonance of polycrystalline NWs, which leads a great deterioration to the quality factor. Further investigation reveals that the energy dissipation is originated from the plastic deformation of polycrystalline NWs in the form of the nucleation of partial dislocations or the generation of micro stacking faults around the GBs and the micro stacking faults is found to keep almost intact during the whole vibration process. Moreover, it is observed that the closer of the grain boundary getting to the regions with the highest strain state, the more energy dissipation will be resulted from the plastic deformation. In addition, either the increase of the number of grain boundaries or the decrease of the distance between the grain boundary and the highest strain state region is observed to induce a lower first resonance frequency. This work sheds lights on the better understanding of the mechanical properties of polycrystalline NWs, which benefits the increasing utilities of NWs in diverse nano-electronic devices.
Resumo:
Widespread adoption by electricity utilities of Non-Conventional Instrument Transformers, such as optical or capacitive transducers, has been limited due to the lack of a standardised interface and multi-vendor interoperability. Low power analogue interfaces are being replaced by IEC 61850 9 2 and IEC 61869 9 digital interfaces that use Ethernet networks for communication. These ‘process bus’ connections achieve significant cost savings by simplifying connections between switchyard and control rooms; however the in-service performance when these standards are employed is largely unknown. The performance of real-time Ethernet networks and time synchronisation was assessed using a scale model of a substation automation system. The test bed was constructed from commercially available timing and protection equipment supplied by a range of vendors. Test protocols have been developed to thoroughly evaluate the performance of Ethernet networks and network based time synchronisation. The suitability of IEEE Std 1588 Precision Time Protocol (PTP) as a synchronising system for sampled values was tested in the steady state and under transient conditions. Similarly, the performance of hardened Ethernet switches designed for substation use was assessed under a range of network operating conditions. This paper presents test methods that use a precision Ethernet capture card to accurately measure PTP and network performance. These methods can be used for product selection and to assess ongoing system performance as substations age. Key findings on the behaviour of multi-function process bus networks are presented. System level tests were performed using a Real Time Digital Simulator and transformer protection relay with sampled value and Generic Object Oriented Substation Events (GOOSE) capability. These include the interactions between sampled values, PTP and GOOSE messages. Our research has demonstrated that several protocols can be used on a shared process bus, even with very high network loads. This should provide confidence that this technology is suitable for transmission substations.
Resumo:
This project researched the performance of emerging digital technology for high voltage electricity substations that significantly improves safety for staff and reduces the potential impact on the environment of equipment failure. The experimental evaluation used a scale model of a substation control system that incorporated real substation control and networking equipment with real-time simulation of the power system. The outcomes confirm that it is possible to implement Ethernet networks in high voltage substations that meet the needs of utilities; however component-level testing of devices is necessary to achieve this. The assessment results have been used to further develop international standards for substation communication and precision timing.