874 resultados para User Interfaces and Human Computer Interaction
Resumo:
This thesis addresses the viability of automatic speech recognition for control room systems; with careful system design, automatic speech recognition (ASR) devices can be useful means for human computer interaction in specific types of task. These tasks can be defined as complex verbal activities, such as command and control, and can be paired with spatial tasks, such as monitoring, without detriment. It is suggested that ASR use be confined to routine plant operation, as opposed the critical incidents, due to possible problems of stress on the operators' speech. It is proposed that using ASR will require operators to adapt a commonly used skill to cater for a novel use of speech. Before using the ASR device, new operators will require some form of training. It is shown that a demonstration by an experienced user of the device can lead to superior performance than instructions. Thus, a relatively cheap and very efficient form of operator training can be supplied by demonstration by experienced ASR operators. From a series of studies into speech based interaction with computers, it is concluded that the interaction be designed to capitalise upon the tendency of operators to use short, succinct, task specific styles of speech. From studies comparing different types of feedback, it is concluded that operators be given screen based feedback, rather than auditory feedback, for control room operation. Feedback will take two forms: the use of the ASR device will require recognition feedback, which will be best supplied using text; the performance of a process control task will require task feedback integrated into the mimic display. This latter feedback can be either textual or symbolic, but it is suggested that symbolic feedback will be more beneficial. Related to both interaction style and feedback is the issue of handling recognition errors. These should be corrected by simple command repetition practices, rather than use error handling dialogues. This method of error correction is held to be non intrusive to primary command and control operations. This thesis also addresses some of the problems of user error in ASR use, and provides a number of recommendations for its reduction.
Resumo:
Clinical Decision Support Systems (CDSSs) need to disseminate expertise in formats that suit different end users and with functionality tuned to the context of assessment. This paper reports research into a method for designing and implementing knowledge structures that facilitate the required flexibility. A psychological model of expertise is represented using a series of formally specified and linked XML trees that capture increasing elements of the model, starting with hierarchical structuring, incorporating reasoning with uncertainty, and ending with delivering the final CDSS. The method was applied to the Galatean Risk and Safety Tool, GRiST, which is a web-based clinical decision support system (www.egrist.org) for assessing mental-health risks. Results of its clinical implementation demonstrate that the method can produce a system that is able to deliver expertise targetted and formatted for specific patient groups, different clinical disciplines, and alternative assessment settings. The approach may be useful for developing other real-world systems using human expertise and is currently being applied to a logistics domain. © 2013 Polish Information Processing Society.
Resumo:
Human-computer interaction is a growing field of study in which researchers and professionals aim to understand and evaluate the impact of new technologies on human behavior. With the integration of smart phones, tablets, and other portable devices into everyday life, there is a greater need to understand the influence of such technology on the human experience. Emerging Perspectives on the Design, Use, and Evaluation of Mobile and Handheld Devices is an authoritative reference source consisting of the latest scholarly research and theories from international experts and professionals on the topic of human-computer interaction with mobile devices. Featuring a comprehensive collection of chapters on critical topics in this dynamic field, this publication is an essential reference source for researchers, educators, students, and practitioners interested in the use of mobile and handheld devices and their impact on individuals and society as a whole. This publication features timely, research-based chapters pertaining to topics in the design and evaluation of smart devices including, but not limited to, app stores, category-based interfaces, gamified mobility applications, mobile interaction, mobile learning, pervasive multimodal applications, smartphone interaction, and social media use.
Resumo:
Ongoing advances in technology are increasing the scope for enhancing and supporting older adults’ daily living. The digital divide between older and younger adults raises concerns, however, about the suitability of technological solutions for older adults, especially for those with impairments. Taking older adults with Age-Related Macular Degeneration (AMD) as a case study, we used user-centred and participatory design approaches to develop an assistive mobile app for self-monitoring their intake of food [12,13]. In this paper we report on findings of a longitudinal field evaluation of our app that was conducted to investigate how it was received and adopted by older adults with AMD and its impact on their lives. Demonstrating the benefit of applying inclusive design methods for technology for older adults, our findings reveal how the use of the app raises participants’ awareness and facilitates self-monitoring of diet, encourages positive (diet) behaviour change, and encourages learning.
Resumo:
Effective interaction with personal computers is a basic requirement for many of the functions that are performed in our daily lives. With the rapid emergence of the Internet and the World Wide Web, computers have become one of the premier means of communication in our society. Unfortunately, these advances have not become equally accessible to physically handicapped individuals. In reality, a significant number of individuals with severe motor disabilities, due to a variety of causes such as Spinal Cord Injury (SCI), Amyothrophic Lateral Sclerosis (ALS), etc., may not be able to utilize the computer mouse as a vital input device for computer interaction. The purpose of this research was to further develop and improve an existing alternative input device for computer cursor control to be used by individuals with severe motor disabilities. This thesis describes the development and the underlying principle for a practical hands-off human-computer interface based on Electromyogram (EMG) signals and Eye Gaze Tracking (EGT) technology compatible with the Microsoft Windows operating system (OS). Results of the software developed in this thesis show a significant improvement in the performance and usability of the EMG/EGT cursor control HCI.
Resumo:
With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. ^ The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.^
Resumo:
With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.
Resumo:
Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.
Resumo:
[EN]This paper describes in detail a real-time multiple face detection system for video streams. The system adds to the good performance provided by a window shift approach, the combination of different cues available in video streams due to temporal coherence. The results achieved by this combined solution outperform the basic face detector obtaining a 98% success rate for around 27000 images, providing additionally eye detection and a relation between the successive detections in time by means of detection threads.
Resumo:
Influencing more environmentally friendly and sustainable behaviour is a current focus of many projects, ranging from government social marketing campaigns, education and tax structures to designers’ work on interactive products, services and environments. There is a wide variety of techniques and methods used, intended to work via different sets of cognitive and environmental principles. These approaches make different assumptions about ‘what people are like’: how users will respond to behavioural interventions, and why, and in the process reveal some of the assumptions that designers and other stakeholders, such as clients commissioning a project, make about human nature. This paper discusses three simple models of user behaviour – the pinball, the shortcut and the thoughtful – which emerge from user experience designers’ statements about users while focused on designing for behaviour change. The models are characterised using systems terminology and the application of each model to design for sustainable behaviour is examined via a series of examples.
Resumo:
Using product and system design to influence user behaviour offers potential for improving performance and reducing user error, yet little guidance is available at the concept generation stage for design teams briefed with influencing user behaviour. This article presents the Design with Intent Method, an innovation tool for designers working in this area, illustrated via application to an everyday human–technology interaction problem: reducing the likelihood of a customer leaving his or her card in an automatic teller machine. The example application results in a range of feasible design concepts which are comparable to existing developments in ATM design, demonstrating that the method has potential for development and application as part of a user-centred design process.
Resumo:
User behaviour is a significant determinant of a product’s environmental impact; while engineering advances permit increased efficiency of product operation, the user’s decisions and habits ultimately have a major effect on the energy or other resources used by the product. There is thus a need to change users’ behaviour. A range of design techniques developed in diverse contexts suggest opportunities for engineers, designers and other stakeholders working in the field of sustainable innovation to affect users’ behaviour at the point of interaction with the product or system, in effect ‘making the user more efficient’. Approaches to changing users’ behaviour from a number of fields are reviewed and discussed, including: strategic design of affordances and behaviour-shaping constraints to control or affect energyor other resource-using interactions; the use of different kinds of feedback and persuasive technology techniques to encourage or guide users to reduce their environmental impact; and context-based systems which use feedback to adjust their behaviour to run at optimum efficiency and reduce the opportunity for user-affected inefficiency. Example implementations in the sustainable engineering and ecodesign field are suggested and discussed.
Resumo:
110 p.
Resumo:
Presentaciones de la asignatura Interfaces para Entornos Inteligentes del Máster en Tecnologías de la Informática/Machine Learning and Data Mining.