952 resultados para Upper Paleozoic
Larval supply and recruitment of coral reef fishes to Marine Reserves in the upper Florida Keys, USA
Resumo:
We examine monthly and seasonal patterns of precipitation across various elevations of the eastern Central Valley of California and the Sierra Nevada. A measure of the strength of the orographic effect called the “precipitation ratio” is calculated, and we separate months into four groups based on being wet or dry and having low or high precipitation ratios. Using monthly maps of mean 700-mb height anomalies, we describe the northern hemisphere mid-tropospheric circulation patterns associated with each of the four groups. Wet months are associated with negative height anomalies over the eastern Pacific, as expected. However, the orientation of the trough is different for years with high and low precipitation ratios. Wet months with high ratios typically have circulation patterns factoring a west-southwest to east-northeast storm track from around the Hawaiian Islands to the Pacific Northwest of the United States. Wet months with low precipitation ratios are associated with a trough centered near the Aleutians and a northwest to southeast storm track. Dry months are marked by anticyclones in the Pacific, but this feature is more localized to the eastern Pacific for months with low precipitation ratios than for those with high ratios. Using precipitation gauge and snow course data from the American River and Truckee-Tahoe basins, we determined that the strength of the orographic effect on a seasonal basis is spatially coherent at low and high elevations and on opposite sides of the Sierra Nevada crestline.
Resumo:
We analyzed data from National Marine Fisheries Service bottom trawl surveys carried out triennially from 1984 to 1996 in the Gulf of Alaska (GOA). The continental shelf and upper slope (0–500 m) of the GOA support a rich demersal fish fauna dominated by arrowtooth flounder (Atheresthes stomias), walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and Pacific Ocean perch (Sebastes alutus). Average catch per unit of effort (CPUE) of all groundfish species combined increased with depth and had a significant peak near the shelf break at 150–200 m. Species richness and diversity had significant peaks at 200–300 m. The western GOA was characterized by higher CPUEs and lower species richness and diversity than the eastern GOA. Highest CPUEs were observed in Shelikof Strait, along the shelf break and upper slope south of Kodiak Island, and on the banks and in the gullies northeast of Kodiak Island. Significant differences in total CPUE among surveys suggest a 40% increase in total groundfish biomass between 1984 and 1996. A multivariate analysis of the CPUE of 72 groundfish taxa revealed strong gradients in species composition with depth and from east to west, and a weak but significant trend in species composition over time. The trend over time was associated with increases in the frequency of occurrence and CPUE of at least eight taxa, including skates (Rajidae), capelin (Mallotus villosus), three flatfish species, and Pacific Ocean perch, and decreases in frequency of occurrence and CPUE of several sculpin (Myoxocephalus spp.) species. Results are discussed in terms of spatial and temporal patterns in productivity and in the context of their ecological and management implications.
Resumo:
Empirical orthogonal function (EOF) analysis and regression analysis are used to investigate zonally averaged seasonal temperature anomaly patterns and trends in the lower stratosphere and upper troposphere. The first four EOFs explain 64 percent of the temperature variance and can be related, respectively, to the solar flux (SF) and El Niño/Southern Oscillation (ENSO), to the quasi-biennial oscillation (QBO), to atmospheric carbon dioxide (CO2) and turbidity (TB), and to ENSO. The signal of the fourth EOF is modulated in January to March by the solar flux, with the sense of the modulation determined by the phase of the quasi-biennial oscillation.
Resumo:
Seasonal snow cover in the mountains of the Upper Colorado River Basin is a major source of water for a large portion of the southwestern United States. The extent and amount of this snowpack not only reflects changes in weather patterns and climate but also influences the general circulation through modification of the energy exchange between land and atmosphere. ... Satellite observations and remote sensing techniques can enhance the standard snowpack observations to provide the temporal and spatial measurements required for understanding the role of snow in the surface energy balance and improving the management of water resources.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Tidal marsh sediments collected from Browns Island in the lower Sacramento/San Joaquin Delta, California, are used to reconstruct environmental variability over the past 6.8 ka. Calibrated radiocarbon dates provide chronostratigraphic control. Trace metal analyses, grain-size variability, organic content, and macrofossils are used to define short- and long-term variations in relative salinity and inundation frequency. Aggradation began in subtidal fresh water conditions about 6.8 ka. Subtidal aggradation of clayey silts continued until about 6.3 ka, when conditions shifted toward a lower intertidal brackish marsh environment. By 5.1 ka, a brackish marsh plain had evolved, with surface water freshening after 4.1 ka. Conditions returned to brackish similar to the present after 2.3 ka.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Variations in temperature that occurred in the North Pacific thermocline (250 to 400 meters) during the 1970s and 1980s are described in both a numerical simulation and XBT observations.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The 1977 climate shift was characterized by low chlorophyll a concentrations and a shift in phytoplankton community composition throughout the upper San Francisco Bay estuary. ... For climate to be a driving force in phytoplankton communities, it must affect mechanisms that control biomass and community composition. The influence of climate on environmental conditions and phytoplankton community composition among water-year types was examined using 19 years of physical, chemical, and phytoplankton data collected monthly at 15 stations throughout the estuary.
Resumo:
Phytoplankton (52 species; Bacillariophyceae>Chlorophyceae>Cyanophyceae> Euglenophyceae=Dinophyceae) of Samuajan beel, a tropical floodplain lake, registered identical mean annual richness (30+4 species) in littoral and limnetic regions and depicted 33.3-77.2% and 31.4-81.1% community similarities respectively. Their abundance ranged between 137+54 n/l in littoral (Bacillariophyceae>Chlorophyceae) and 122 ± 45 n/l (Chlorophyceae>Bacillariophyceae) in limnetic communities, comprised about 46% of net plankton and indicated winter peaks. This study depicted moderate species diversity, high evenness and low dominance of phytoplankton; species diversity showed significant direct correlation with richness and evenness and an inverse relationship with dominance. Phytoplankton showed significant positive relationship with transparency and silicate and negative with water temperature, rainfall, chloride and nitrate. Multiple regression revealed that ten abiotic factors accounted for >80-98% of density variations of phytoplankton and the dominant groups. ANOVA depicted trends of significance in abundance of the biotic communities analysed.