895 resultados para Unsupervised endmember extraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents a new parallel method for hyperspectral unmixing composed by the efficient combination of two popular methods: vertex component analysis (VCA) and sparse unmixing by variable splitting and augmented Lagrangian (SUNSAL). First, VCA extracts the endmember signatures, and then, SUNSAL is used to estimate the abundance fractions. Both techniques are highly parallelizable, which significantly reduces the computing time. A design for the commodity graphics processing units of the two methods is presented and evaluated. Experimental results obtained for simulated and real hyperspectral data sets reveal speedups up to 100 times, which grants real-time response required by many remotely sensed hyperspectral applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dried flowers and leaves of Origanum glandulosum Desf. were submitted to hydrodistillation (HD) and supercritical fluid extraction with CO2 (SFE). The essential oils isolated by HD and volatile oils obtained by SFE were analysed by GC and GC/MS. Total phenolics content and antioxidant effectiveness were performed. The main components of the essential oils from Bargou and Nefza were: p-cymene (40.4% and 39%), thymol (38.7% and 34.4%) and γ- terpinene (12.3% and 19.2%), respectively. The major components obtain by SFE in the volatile oil, from Bargou and Nefza, were: p-cymene (32.3% and 36.2%), thymol (41% and 40%) and γ-terpinene (20.3% and 13.3%). Total phenolic content, expressed in gallic acid equivalent (GAE) g kg-1 dry weight, varied from 12 to 27 g kg-1 dw, and the ability to scavenge the DPPH radicals, expressed by IC50 ranged from 44 to143 mg L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Beguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovova's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of monopolar and bipolar shaped pulses in additional yield of apple juice extraction is evaluated. The applied electric field strength, pulsewidth, and number of pulses are assessed for both pulse types, and divergences are analyzed. Variation of electric field strength is ranged from 100 to 1300 V/cm, pulsewidth from 20 to 300 mu s, and the number of pulses from 10 to 200, at a frequency of 200 Hz. Two pulse trains separated by 1 s are applied to apple cubes. Results are plotted against reference untreated samples for all assays. Specific energy consumption is calculated for each experiment as well as qualitative indicators for apple juice of total soluble dry matter and absorbance at 390-nm wavelength. Bipolar pulses demonstrated higher efficiency, and specific energetic consumption has a threshold where higher inputs of energy do not result in higher juice extraction when electric field variation is applied. Total soluble dry matter and absorbance results do not illustrate significant differences between application of monopolar and bipolar pulses, but all values are inside the limits proposed for apple juice intended for human consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Additional apple juice extraction with pulsed electric field pretreated apple cubes towards control samples is evaluated. Monopolar and bipolar shaped pulses are compared and their effect is studied with variation of electric field, pulse width and number of pulses. Variation of electric field strength is ranged from 100 V/cm to 1300 V/cm, pulse width from 20 mu s to 300 mu s and number of pulses from 10 to 200, at frequency of 200Hz. Two pulse trains separated by 1 second are applied to all samples. Bipolar pulses showed higher apple juice yields with all studied parameters. Calculation of specific energies consumed was assessed and a threshold where higher energy inputs do not increase juice yield is found for a number of used parameters. Qualitative parameters of total soluble matter (Brix) and absorbance at 390 nm wavelength were determined for each sample and results show that no substantial differences are found for PEF pre-treated and control samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coffee silverskin is a major roasting by-product that could be valued as a source of antioxidant compounds. The effect of the major variables (solvent polarity, temperature and extraction time) affecting the extraction yields of bioactive compounds and antioxidant activity of silverskin extracts was evaluated. The extracts composition varied significantly with the extraction conditions used. A factorial experimental design showed that the use of a hydroalcoholic solvent (50%:50%) at 40 °C for 60 min is a sustainable option to maximize the extraction yield of bioactive compounds and the antioxidant capacity of extracts. Using this set of conditions it was possible to obtain extracts containing total phenolics (302.5 ± 7.1 mg GAE/L), tannins (0.43 ± 0.06 mg TAE/L), and flavonoids (83.0 ± 1.4 mg ECE/L), exhibiting DPPHradical dot scavenging activity (326.0 ± 5.7 mg TE/L) and ferric reducing antioxidant power (1791.9 ± 126.3 mg SFE/L). These conditions allowed, in comparison with other “more effective” for some individual parameters, a cost reduction, saving time and energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral imaging sensors provide image data containing both spectral and spatial information from the Earth surface. The huge data volumes produced by these sensors put stringent requirements on communications, storage, and processing. This paper presents a method, termed hyperspectral signal subspace identification by minimum error (HySime), that infer the signal subspace and determines its dimensionality without any prior knowledge. The identification of this subspace enables a correct dimensionality reduction yielding gains in algorithm performance and complexity and in data storage. HySime method is unsupervised and fully-automatic, i.e., it does not depend on any tuning parameters. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral unmixing methods aim at the decomposition of a hyperspectral image into a collection endmember signatures, i.e., the radiance or reflectance of the materials present in the scene, and the correspondent abundance fractions at each pixel in the image. This paper introduces a new unmixing method termed dependent component analysis (DECA). This method is blind and fully automatic and it overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. DECA is based on the linear mixture model, i.e., each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abundances are modeled as mixtures of Dirichlet densities, thus enforcing the non-negativity and constant sum constraints, imposed by the acquisition process. The endmembers signatures are inferred by a generalized expectation-maximization (GEM) type algorithm. The paper illustrates the effectiveness of DECA on synthetic and real hyperspectral images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we sought to assess the applicability of GC–MS/MS for the identification and quantification of 36 pesticides in strawberry from integrated pest management (IPM) and organic farming (OF). Citrate versions of QuEChERS (quick, easy, cheap, effective, rugged and safe) using dispersive solid-phase extraction (d-SPE) and disposable pipette extraction (DPX) for cleanup were compared for pesticide extraction. For cleanup, a combination of MgSO4, primary secondary amine and C18 was used for both the versions. Significant differences were observed in recovery results between the two sample preparation versions (DPX and d-SPE). Overall, 86% of the pesticides achieved recoveries (three spiking levels 10, 50 and 200 µg/kg) in the range of 70–120%, with <13% RSD. The matrix effects were also evaluated in both the versions and in strawberries from different crop types. Although not evidencing significant differences between the two methodologies were observed, however, the DPX cleanup proved to be a faster technique and easy to execute. The results indicate that QuEChERS with d-SPE and DPX and GC–MS/MS analysis achieved reliable quantification and identification of 36 pesticide residues in strawberries from OF and IPM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets worldwide suffered profound transformations. The privatization of previously nationally owned systems; the deregulation of privately owned systems that were regulated; and the strong interconnection of national systems, are some examples of such transformations [1, 2]. In general, competitive environments, as is the case of electricity markets, require good decision-support tools to assist players in their decisions. Relevant research is being undertaken in this field, namely concerning player modeling and simulation, strategic bidding and decision-support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfilment of the requirements for the degree of Master in Computer Science