893 resultados para Unsaturated polyester


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the performance of unsaturated soils under repeated loading. As part of the research, a triaxial system was developed that incorporates small-strain measurements using Hall effect transducers, in addition to suction measurements taken using a psychrometer. Tests were conducted on samples of kaolin under constant water mass conditions. The results address the effects of compaction effort and water content at the time of compaction on the overall performance of unsaturated soils, under different amplitudes of loading and different confining pressures. The results show that suction in the sample reduced with increasing number of loading cycles of the same magnitude. The resilient modulus initially increased with increasing water content up to approximately optimum water content, and then reduced substantially with further increase in water content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various grades of Thermoplastic Polyurethane (TPU) supplied by Bayer were studied to determine their suitability for the rotational moulding process. Following grinding, parts were produced using a variety of peak internal air temperatures and cooling rates. The tensile and impact properties of these parts were then analysed and it was found that both the grade and moulding conditions had a large bearing on the quality and mechanical strength of the part produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of alpha,beta-unsaturated aldehydes and nitriles of significant interest in the fragrance industry have been prepared using Grubbs' catalysts in cross-metathesis reactions of electron-deficient olefins (i.e., acrolein, crotonaldehyde, methacrolein, and acrylonitrile) with various 1-alkenes, including 1-decene, 1-octene, 1-hexene and 2-allyloxy-6-methylheptane. The latter is of particular interest, as it has not previously being used as a substrate in cross-metathesis reactions and allows access to valuable intermediates for the synthesis of new fragrances. Most reactions gave good selectivity of the desired CM product (>= 90%). Detailed optimisation and mechanistic studies have been performed on the cross-metathesis of acrolein with 1-decene. Recycling of the catalyst has been attempted using ionic liquids. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suction is an important stress variable that is required for reliable predictions of the likely performance of unsaturated soils. The axis translation technique is the best established method of measuring or controlling suction; however, the success of this application is heavily dependent on the rating of the high air entry filter (HAF) and how it is incorporated into the testing system. This paper reports some basic experiments in which samples of unsaturated kaolin were brought to saturation in stages using 5 bar and 15 bar HAFs. The results have shown that the water equilibrium in unsaturated soils is greatly affected by the rating of filters. The findings also suggest that the flow through unsaturated soils is not necessarily governed by the one-dimensional consolidation theory that was developed for saturated soils, and this may be attributed to the bimodal pore size distribution of unsaturated soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromium(II) chloride converts alpha,beta-unsaturated aldehydes to the corresponding cyclopropanols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the tris(3-phenylpyrazolyl)methane sulfonate species (Tpms(Ph))Li with the copper(I) complex [Cu(MeCN)(4)][PF6] affords [Cu(Tpms(Ph))(MeCN)] 1. The latter, upon reaction with equimolar amounts of cyclohexyl-(CyNC) or 2,6-dimethylphenyl (XylNC) isocyanides, or excess CO, furnishes the corresponding Cu(I)complexes [Cu(Tpms(Ph))(CNR)] (R = Cy 2, Xyl 3) or [Cu(Tpms(Ph))(CO)] 4. The ligated isocyanide in 2 or 3 (or the acetonitrile ligand in 1)is displaced by 3-iminoisoindolin-1-one to afford 5, the first copper(I) complex containing an 3-iminoisoindolin-1-one ligand. The ligated acetonitrile in 1 undergoes nucleophilic attack by methylamine to give the amidine complex [Cu(Tpms(Ph)){MeC(NH)NHMe}] 6, whereas only the starting materials were recovered from the attempted corresponding reactions of 2 and 3 with methylamine. Complexes 1 or 6 form the trinuclear hydroxo-copper(II)species [(mu-Cu){Cu(mu-OH) (2)(Tpms(Ph))}(2)] 7 upon air oxidation in moist methanol. In all the complexes the scorpionate ligand facially caps the metal in the N,N,O-coordination mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis submitted to Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa in partial fulfillment of the requirements for the obtention of the degree of Master of Science in Biotechnology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cocondensation of nickel with a number of unsaturated ligands was studied, as was the cocondensation with a number of mixed ligand systems. Enamines were found not to react with nickel while acrylonitrile was polymerized. In the mixed ligand syst.ems different products were obtained than when the ligands were cocondensed individually. Cocondensations of benzyl halide/allyl halide mixtures gave unstable products that were not observed when the halides were cocondensed individually. The effect of Kao-Wool insulation on nickel/benzyl halide cocondensations was found to be significant. Kao-Wool caused the bulk of the benzyl halide to be polymeri zed to a number of poly-benzylic species. An alkali metal reactor was designed for the evaporation of sodium and potassium atoms into cold solutions of metal halide and an or ganic substrate. This apparatus was used to synthesize Ni(P¢3 )3' but proved unsuccessful for synthesizing a nickel-enamine compound.