920 resultados para Uncertainty avoidance
Resumo:
Epidemiological studies of malaria or other vector-transmitted diseases often consider vectors as passive actors in the complex life cycle of the parasites, assuming that vector populations are homogeneous and vertebrate hosts are equally susceptible to being infected during their lifetime. However, some studies based on both human and rodent malaria systems found that mosquito vectors preferentially selected infected vertebrate hosts. This subject has been scarcely investigated in avian malaria models and even less in wild animals using natural host-parasite associations. We investigated whether the malaria infection status of wild great tits, Parus major, played a role in host selection by the mosquito vector Culex pipiens. Pairs of infected and uninfected birds were tested in a dual-choice olfactometer to assess their attractiveness to the mosquitoes. Plasmodium-infected birds attracted significantly fewer mosquitoes than the uninfected ones, which suggest that avian malaria parasites alter hosts' odours involved in vector orientation. Reaction time of the mosquitoes, that is, the time taken to select a host, and activation of mosquitoes, defined as the proportion of individuals flying towards one of the hosts, were not affected by the bird's infection status. The importance of these behavioural responses for the vector is discussed in light of recent advances in related or similar model systems.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.
Resumo:
This article studies how product introduction decisions relate to profitability and uncertainty in the context of multi-product firms and product differentiation. These two features, common to many modern industries, have not received much attention in the literature as compared to the classical problem of firm entry, even if the determinants of firm and product entry are quite different. The theoretical predictions about the sign of the impact of uncertainty on product entry are not conclusive. Therefore, an econometric model relating firms’ product introduction decisions with profitability and profit uncertainty is proposed. Firm’s estimated profits are obtained from a structural model of product demand and supply, and uncertainty is proxied by profits’ variance. The empirical analysis is carried out using data on the Spanish car industry for the period 1990-2000. The results show a positive relationship between product introduction and profitability, and a negative one with respect to profit variability. Interestingly, the degree of uncertainty appears to be a driving force of entry stronger than profitability, suggesting that the product proliferation process in the Spanish car market may have been mainly a consequence of lower uncertainty rather than the result of having a more profitable market
Resumo:
We studied the influence of signal variability on human and model observers for detection tasks with realistic simulated masses superimposed on real patient mammographic backgrounds and synthesized mammographic backgrounds (clustered lumpy backgrounds, CLB). Results under the signal-known-exactly (SKE) paradigm were compared with signal-known-statistically (SKS) tasks for which the observers did not have prior knowledge of the shape or size of the signal. Human observers' performance did not vary significantly when benign masses were superimposed on real images or on CLB. Uncertainty and variability in signal shape did not degrade human performance significantly compared with the SKE task, while variability in signal size did. Implementation of appropriate internal noise components allowed the fit of model observers to human performance.
Resumo:
In this paper, we study the determinants of political myopia in a rational model of electoral accountability where the key elements are informational frictions and uncertainty. We build a framework where political ability is ex-ante unknown and policy choices are not perfectly observable. On the one hand, elections improve accountability and allow to keep well-performing incumbents. On the other, politicians invest too little in costly policies with future returns in an attempt to signal high ability and increase their reelection probability. Contrary to the conventional wisdom, uncertainty reduces political myopia and may, under some conditions, increase social welfare. We use the model to study how political rewards can be set so as to maximise social welfare and the desirability of imposing a one-term limit to governments. The predictions of our theory are consistent with a number of stylised facts and with a new empirical observation documented in this paper: aggregate uncertainty, measured by economic volatility, is associated to better ...scal discipline in a panel of 20 OECD countries.
Resumo:
This paper analyzes the optimal behavior of farmers in the presence of direct payments and uncertainty. In an empirical analysis for Switzerland, it confirms previously obtained theoretical results and determines the magnitude of the theoretical predicted effects. The results show that direct payments increase agricultural production between 3.7% to 4.8%. Alternatively to direct payments, the production effect of tax reductions is evaluated in order to determine its magnitude. The empirical analysis corroborates the theoretical results of the literature and demonstrates that tax reductions are also distorting, but to a substantially lesser degree if losses are not offset. However, tax reductions, independently whether losses are offset or not, lead to higher government spending than pure direct payments
Resumo:
The paper considers some issue in the governance of the European Protected Designation of Origin (PDO). The PDO systems are the outcomes of both farmers and consumers expectations and connect the valorisation of the agricultural and rural resources of given territories to the quality of typical products. A critical point in the governance of the PDO systems is represented by the connection between the quality strategies and the uncertainty. The paper argues that the PDO systems can be thought of as strictly coordinated subsystems in which the ex post governance play a critical role in coping with quality uncertainty. The study suggests that the society's inducements given raise to complex organizational systems in which the allocation of decision rights to PDO collective organizations play a major role. The empirical analysis is carried out by examining ten Italian PDO systems in order to identify the decision rights allocated.
Resumo:
The article discusses the behavioral aspects that affect the entrepreneurs' decision making under the Knightian uncertainty approach. Since the profit arising from entrepreneurial activity represents the reward of an immeasurable and subjective risk, it has been hypothesized that innovative entrepreneurs have excessive optimism and confidence, which leads them to invest in high-risk activities. A behavioral model of decision making under uncertainty is used to test the hypothesis of overconfidence. This model is based on Bayesian inference, which allows us to model the assumption that these entrepreneurs are overconfident. We conclude that, under the hypothesis of overconfidence, these entrepreneurs decide to invest, despite the fact that the expected utility model indicates the contrary. This theoretical finding could explain why there are a large number of business failures in the first years of activity.
Resumo:
The Amazon Fund, created in 2008 by the Brazilian Federal Government, is managed by Banco Nacional de Desenvolvimento Econômico e Social (BNDES). It is a pioneering initiative to fundraise and manage financial resources to cut back deforestation and support sustainable development for 30 million inhabitants in the Amazon Biome. The Amazon Fund has already received more than R$ 1.7 billion in grants (about USD 787 million). This essay analyzes the Amazon Fund's governance and management with focus on its operation and from its stakeholders' perspectives. A combination of research methods includes: documental research, in-depth interviews, and speech analysis. The study offers a comparative analysis of strengths and weaknesses related to its governance. Furthermore, it proposes ways to improve its management towards greater effectiveness. The essay also includes an assessment of the government of Norway, a major donor to the fund. The governments of Norway and Germany, in partnership with Brazil, reveal how important it is to experiment with new means of international cooperation to successfully reduce greenhouse gas emissions through rainforest preservation.
Resumo:
L’objectiu principal és presentar un nou prototipus d’eina per al disseny de les plantes de tractament d’aigües residuals utilitzant models mecànics dinàmics quantificant la incertesa
Resumo:
In clinical practice, physicians are confronted with a multitude of definitions and treatment goals for arterial hypertension, depending of the diagnostic method used (e.g. office, home and ambulatory blood pressure measurement) and the underlying disease. The historical background and evidence of these different blood pressure thresholds are discussed in this article, as well as some recent treatment guidelines. Besides, the debate of the "J curve", namely the possible risks associated with an excessive blood pressure reduction, is discussed.
Resumo:
This paper deals with fault detection and isolation problems for nonlinear dynamic systems. Both problems are stated as constraint satisfaction problems (CSP) and solved using consistency techniques. The main contribution is the isolation method based on consistency techniques and uncertainty space refining of interval parameters. The major advantage of this method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements, and model errors. Interval calculations bring independence from the assumption of monotony considered by several approaches for fault isolation which are based on observers. An application to a well known alcoholic fermentation process model is presented
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system