987 resultados para UV detection


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to determine the pharmacokinetic parameters of liposomal ropivacaine after dental anesthesia in 14 healthy volunteers. In this randomized, double-blind and crossover study, the volunteers received maxillary infiltration of liposome-encapsulated 0.5% ropivacaine and, 0.5% ropivacaine with 1:200,000 epinephrine in two different sessions. Blood samples were collected before and after (from 15 to 1440 min) the administration of either ropivacaine formulation. HPLC with UV detection was used to quantify plasma ropivacaine concentrations. The pharmacokinetic parameters AUC(0-24) (area under the plasma concentration x time curve from baseline to 24 h), AUC(0-infinity) (area under the plasma concentration-time curve from baseline to infinity), C-max (maximum drug concentration), CL (renal clearance), T-max (maximum drug concentration time), t(1/2) (elimination half-life) and Vd (volume of distribution) were analyzed using the Wilcoxon signed-rank test. No differences (p > 0.05) were observed between both formulations for any of the pharmacokinetic parameters evaluated and plasma ropivacaine concentrations, considering each period of time. Both formulations showed similar pharmacokinetic profiles, indicating that the liposomal formulation could be a safer option for use of this local anesthetic, due to the absence of a vasoconstrictor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of capillary electrophoresis (CE) has been restricted to applications having high sample concentrations because of its low sensitivity caused by small injection volumes and, when ultraviolet (UV) detection is used, the short optical path length. Sensitivity in CE can be improved by using more sensitive detection systems, or by preconcentration techniques which are based on chromatographic and/or electrophoretic principles. One of the promising strategies to improve sensitivity is solid phase extraction (SPE). Solid Phase Extraction utilizes high sample volumes and a variety of complex matrixes to facilitate trace detection. To increase the specificity of the SPE a selective solid phase must be chosen. Immunosorbents, which are a combination of an antibody and a solid support, have proven to be an excellent option because of high selectivity of the antibody. This thesis is an exploratory study of the application of immunosorbent-SPE combined with CE for trace concentration of benzodiazepines. This research describes the immobilization and performance evaluation of an immunosorbent prepared by immobilizing a benzodiazepine-specific antibody on aminopropyl silica. The binding capacity of the immunosorbent, measured as µg of benzodiazepine/ gram of immunosorbent, was 39 ± 10. The long term stability of the prepared immunosorbent has been improved by capping the remaining aminopropyl groups by reaction with acetic anhydride. The capped immunosorbent retained its binding capacity after several uses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high-performance liquid chromatography (HPLC) method for the determination of acetaldehyde in fuel ethanol was developed. Acetaldehyde was derivatized with 0.900 mL 2,4-dinitrophenylhydrazine (DNPHi) reagent and 50 mu L phosphoric acid 1 mol L-1 at a controlled room temperature of 15 degrees C for 20 min. The separation of acetaldehyde- DNPH (ADNPH) was carried out on a Shimadzu Shim-pack C-18 column, using methanol/LiCl(aq) 1.0 mM (80/20, v/v) as a mobile phase under isocratic elution and UV-Vis detection at 365 nm. The standard curve of ADNPH was linear in the range 3-300 amg L-1 per injection (20 mu L) and the limit of detection (LOD) for acetaldehyde was 2.03 mu g L-1, with a correlation coefficient greater than 0.999 and a precision (relative standard deviation, RSD) of 5.6% (n=5). Recovery studies were performed by fortifying fuel samples with acetaldehyde at various concentrations and the results were in the range 98.7-102%, with a coefficient of variation (CV) from 0.2% to 7.2%. Several fuel samples collected from various gas stations were analyzed and the method was successfully applied to the analysis of acetaldehyde in fuel ethanol samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the construction and application of two amperometric sensors for sensitive UV-filter determination. The sensors were prepared using stainless steel electrodes in which polyaniline (PANI) was electrochemically polymerized in the presence of nickel (NiPcTS) or iron (FePcTS) tetrasulfonated phthalocyanines. The sensor surface characterizations were carried out using atomic force microscopy (AFM). The PANI/NiPcTS sensor was selective for the chemical UV-filter p-aminobenzoic acid (PABA) and the PANI/FePcTS sensor was selective for octyldimethyl-PABA (ODP), both in a mixture of tetrahydrofuran (THF) and 0.1 mol L(-1) H(2)SO(4) at a volume ratio of 30 : 70, and with an applied potential of 0.0 mV vs. Ag vertical bar AgCl. A detailed investigation of the selectivity was carried out for both sensors, in order to determine their responses for ten different UV filters. Finally, each sensor was successfully applied to PABA or ODP quantification in sunscreen formulations and water from swimming pools.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of pyretroids, their by-products and degradation products on humans and the environment is recognized as a serious problem. Despite several studies regarding esfenvalerate toxicity and its detection in water and sediments, there is still a lack of information about its degradation intermediates and by-products in water. In this work, an HPLC method was developed to follow up the degradation of esfenvalerate and to detect the intermediates and by-products formed during the chemical degradation process. The chemical degradation was performed using an esfenvalerate suspension and different concentrations of hydrogen peroxide, temperatures, and pH. The reaction was monitored for 24 hr, and during the kinetic experiments, samples were collected at several reaction times and analyzed by HPLC-UV-PAD. In the degradation process, eleven different compounds (intermediate and by-products) were detected, among them the metabolites 3-phenoxybenzoic acid and 3-phenoxybenzaldehyde. HPLC-UV-PAD proved to be a valuable analytical technique for the rapid and reliable separation and determination of esfenvalerate, its degradation intermediates, and by-products.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the detection and identification of hydrocarbons through flu oro-sensing by developing a simple and inexpensive detector for inland water, in contrast to current systems, designed to be used for marine waters at large distances and being extremely costly. To validate the proposed system, three test-benches have been mounted, with various UV-Iight sources. Main application of this system would be detect hydrocarbons pollution in rivers, lakes or dams, which in fact, is of growing interest by administrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of an antiserum to ultraviolet radiation (UVR)-damaged DNA is presented. A novel experimental system was employed to ascertain the limits of detection for this antiserum. Using a DNA standard containing a known amount of dimer, the limits of detection were found to be 0.9 fmol of dimer. This was compared to a limit of 20-50 fmol dimer using gas chromatography-mass spectrometry (GC-MS). Induction of thymine dimers in DNA following UVR exposure, as assessed using this antiserum in an enzyme-linked immunosorbent assay (ELISA), was compared with GC-MS measurements. The ELISA method successfully demonstrated the induction of lesions in DNA irradiated either with UVC or UVB, although despite high sensitivity, no discernible binding was seen to UVA-irradiated DNA. The antiserum was also shown to be applicable to immunocytochemistry, localising damage in the nuclei of UVR exposed keratinocytes in culture. The ability of the antiserum to detect DNA damage in skin biopsies of individuals exposed to sub-erythemal doses of UVR was also demonstrated. Moreover, the subsequent removal of this damage, as evidenced by a reduction in antiserum staining, was noted in sections of biopsies taken in the hours following irradiation. © 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sequence specificity of antibodies to UV-damaged DNA has not been described previously. The antisera investigated here were specific for UV-modified DNA and were absolutely dependent upon the presence of thymine residues. Using a series of oligonucleotides in competition ELISA, increased inhibition was observed with increasing chain length of UV-polythymidylate. A minimum of three adjacent thymines was required for effective inhibition; alone, dimers of thymine were poor antigens. Although UV-irradiated poly(dC) was not antigenic, cytosines could partially replace thymines within the smallest effective epitope (T-T-T) with a high degree of sequence specificity, not previously described. The main epitope induced by UV was formed from adjacent thymines and either a 3' or a 5' pyrimidine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. ^ Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. ^ Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. ^ It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. ^ Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes an accurate, sensitive, and specific chromatographic method for the simultaneous quantitative determination of lamivudine and zidovudine in human blood plasma, using stavudine as an internal standard. The chromatographic separation was performed using a C8 column (150 x 4.6 mm, 5 mu m), and ultraviolet absorbency detection at 270 nm with gradient elution. Two mobile phases were used. Phase A contained 10 mM potassium phosphate and 3% acetonitrile, whereas Phase B contained methanol. A linear gradient was used with a variability of A-B phase proportion from 98-2% to 72-28%, respectively. The drug extraction was performed with two 4 mL aliquots of ethyl acetate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stability-indicating high-performance liquid chromatographic (HPLC) and a second-order derivative spectrophotometric (UVDS) analytical methods were validated and compared for determination of simvastatin in tablets. The HPLC method was performed with isocratic elution using a C18 column and a mobile phase composed of methanol:acetonitrile:water (60:20:20, v/v/v) at a flow rate of 1.0 ml/min. The detection was made at 239 nm. In UVDS method, methanol and water were used in first dilution and distilled water was used in consecutive dilutions and as background. The second-order derivative signal measurement was taken at 255 nm. Analytical curves showed correlation coefficients > 0.999 for both methods. The quantitation limits (QL) were 2.41 mu g/ml for HPLC and 0.45 mu g/ml for UVDS, respectively. Intra and inter-day relative standard deviations were < 2.0 %. Statistical analysis with t- and F-tests are not exceeding their critical values demonstrating that there is no significant difference between the two methods at 95 % confidence level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High performance liquid chromatographic (HPLC) and UV derivative spectrophotometric (UVDS) methods were developed and validated for the quantitative determination of sotalol hydrochloride in tablets. The HPLC method was performed on a C18 column with fluorescence detection. The excitation and emission wavelengths were 235 and 310nm, respectively. The mobile phase was composed of acetonitrile-water containing 0.1% trietylamine (7:93v/v) and pH adjusted to 4.6 with formic acid. The UVDS method was performed taking a signal at 239.1nm in the first derivative. The correlation coefficients (r) obtained were 0.9998 and 0.9997 for HPLC and UVDS methods, respectively. The proposed methods are simple and adaptable to routine analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a simple and reliable HPLC method to evaluate the influence of two currently available photostabilizers on cosmetic formulations containing combined UV-filters and vitamins A and E. Vitamins and UV-filters, widely encountered in products of daily use have to be routinely evaluated since photoinstability can lead to reductions in their efficacy and safety. UV-irradiated formulation samples were submitted to a procedure that included a reliable, precise and specific HPLC method employing a C18 column and detection at 325 and 235 nm. Methanol, isopropanol and water were the mobile phases in gradient elution. The method precision was between 0.28 and 5.07. The photostabilizers studied [diethylhexyl 2,6-naphthalate (DEHN) and benzotriazolyl dodecyl p-cresol (BTDC)], influenced the stability of octyl methoxycinnamate (OMC) associated with vitamins A and E. BTDC was considered the best photostabilizer to vitamins and OMC when the UV-filters were combined with both vitamins A and E. (C) 2010 Elsevier B.V. All rights reserved.