418 resultados para Tunnels.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho visa determinar a contribuição das emissões evaporativas provenientes dos veículos leves de passageiro, para a degradação da qualidade do ar atmosférico. O objetivo principal é avaliar as concentrações compostos monoaromáticos voláteis Benzeno, Tolueno, Etilbenzeno e Xilenos (BTEX) em ambientes confinados, sendo este realizado em um local que caracterize a realidade da frota veicular da Região metropolitana do Rio de Janeiro. As amostras foram coletadas em um estacionamento subterrâneo de um Shopping Center da zona norte do Rio de Janeiro, através do sistema de amostragem ativa, utilizando cartucho de carvão ativo como adsorvente. As amostras foram extraídas com solvente orgânico e analisadas posteriormente por Cromatografia gasosa acoplada à espectrometria de massas (CGEM). As médias dos resultados obtidos foram 52,7 g.m-3 para o benzeno, 203,6 g.m-3 para o tolueno, 44,6 g.m-3 para o etilbenzeno, 115,7 g.m-3 para os xilenos, sendo o tolueno o composto encontrado em maior abundância. Esses resultados foram comparados com resultados encontrados na literatura de emissões veiculares em ambientes confinados como garagens e túneis. Foi investigada a correlação com as emissões do veículo em movimento, obtidas através de estudos previamente realizados em um túnel de grande circulação e as emissões obtidas no estacionamento subterrâneo. Através desses dados ficou demonstrada diferença das fontes de emissão.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CTRL Contract 220 covered 7.5km twin-bore tunnels excavated between late 2002 and early 2004 from Stratford Box to St Pancras station in Central London. To ensure efficient machine operation as well as the transport and disposal of soil, soil conditioning treatments were applied. Specifically, the foam injection ratio (FIR) and the polymer injection ratio (PIR) (injected volume of foam and polymer solution expressed as a percentage of the excavated soil volume) were employed. It was found that carefully selected soil conditioning allowed chamber pressures of 200kPa or more to be accurately controlled in the stiff London Clay and to an extent, in the very stiff clays of the Lambeth Group. Average FIRs of 50% and PIRs of 7 and 9% were used in the Thanet Sand and in the Lambeth Group Clays. In contrast, much lower quantities of foam were used in the London Clay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper describes the use of optical fiber Brillouin Optical Time Domain Reflectometry (BOTDR) to monitor the strain distribution in an existing tunnel while a twin tunnel was bored at close-proximity. The twin circular bored tunnels between Serangoon and Bartley stations on the new Circle Line Stage 3 subway in Singapore were constructed at close-proximity to avoid underpinning the foundations of adjacent buildings. The minimum clear separation of the two tunnels is 2.3m (0.4 times the tunnel diameter). The Outer Tunnel was constructed first, followed by the Inner Tunnel, with the earth-pressure balance tunnel boring machines maintained at a minimum of 100m apart. In this trial application of BOTDR, the strain distribution along the Outer Tunnel was measured, in order to monitor its deformation due to the boring of the Inner Tunnel at close-proximity. The aim of the trial application was to determine the practicality of this monitoring method for future use in 'live' tunnels. This paper compares the measurements obtained from optical fiber BOTDR with conventional methods of tunnel monitoring and describes preliminary installation and workmanship guidelines derived from lessons learnt during this trial. © 2007 ASCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fort Canning Tunnel is the first road tunnel in Singapore to be built using the sprayed concrete lining (SCL) method. The major technical challenge of this was to construct a 15m wide tunnel by mining in soft ground under a shallow overburden of 3m to 9m. This paper describes the geotechnical investigations and monitoring controls for the safe and progressive execution of the works, such as soil investigations, trial forepoling works, surface settlement monitoring, tunnel settlement monitoring, face movement monitoring, and the observational approach to construction. The monitored field data showed the volume loss to range from 0.4% to 2.1%, and the observed surface settlement trough was found to agree well with the theoretical Gaussian trough. Other observations made include substantial surface settlements induced by the stress relief at and ahead of the tunnel face in spite of the forepoling umbrella, and the higher volume losses associated with higher overburden. Tunnel face movements were observed during installation of forepoling. These observations are of interest to engineers planning future SCL tunnels in similar conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following a tunnel excavation in low-permeability soil, it is commonly observed that the ground surface continues to settle and ground loading on the tunnel lining changes, as the pore pressures in the ground approach a new equilibrium condition. The monitored ground response following the tunnelling under St James's Park, London, shows that the mechanism of subsurface deformation is composed of three different zones: swelling, consolidation and rigid body movement. The swelling took place in a confined zone above the tunnel crown, extending vertically to approximately 5 m above it. On the sides of the tunnel, the consolidation of the soil occurred in the zone primarily within the tunnel horizon, from the shoulder to just beneath the invert, and extending laterally to a large offset from the tunnel centreline. Above these swelling and consolidation zones the soil moved downward as a rigid body. In this study, soil-fluid coupled three-dimensional finite element analyses were performed to simulate the mechanism of long-term ground response monitored at St James's Park. An advanced critical state soil model, which can simulate the behaviour of London Clay in both drained and undrained conditions, was adopted for the analyses. The analysis results are discussed and compared with the field monitoring data. It is found that the observed mechanism of long-term subsurface ground and tunnel lining response at St James's Park can be simulated accurately only when stiffness anisotropy, the variation of permeability between different units within the London Clay and non-uniform drainage conditions for the tunnel lining are considered. This has important implications for future prediction of the long-term behaviour of tunnels in clays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate predictions of ground-borne vibration levels in the vicinity of an underground railway are greatly sought after in modern urban centres. Yet the complexity involved in simulating the underground environment means that it is necessary to make simplifying assumptions about this system. One such commonly made assumption is to ignore the effects of neighbouring tunnels, despite the fact that many underground railway lines consist of twin-bored tunnels, one for the outbound direction and one for the inbound direction. This paper presents a unique model for two tunnels embedded in a homogeneous, elastic fullspace. Each of these tunnels is subject to both known, dynamic train forces and dynamic cavity forces. The net forces acting on the tunnels are written as the sum of those tractions acting on the invert of a single tunnel, and those tractions that represent the motion induced by the neighbouring tunnel. By apportioning the tractions in this way, the vibration response of a two-tunnel system is written as a linear combination of displacement fields produced by a single-tunnel system. Using Fourier decomposition, forces are partitioned into symmetric and antisymmetric modenumber components to minimise computation times. The significance of the interactions between two tunnels is quantified by calculating the insertion gains, in both the vertical and horizontal directions, that result from the existence of a second tunnel. The insertion-gain results are shown to be localised and highly dependent on frequency, tunnel orientation and tunnel thickness. At some locations, the magnitude of these insertion gains is greater than 20 dB. This demonstrates that a high degree of inaccuracy exists in any surface vibration prediction model that includes only one of the two tunnels. This novel two-tunnel solution represents a significant contribution to the existing body of research into vibration from underground railways, as it shows that the second tunnel has a significant influence on the accuracy of vibration predictions for underground railways. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate predictions of ground-borne vibration levels in the vicinity of an underground railway are greatly sought in modern urban centers. Yet the complexity involved in simulating the underground environment means that it is necessary to make simplifying assumptions about this environment. One such commonly-made assumption is to model the railway as a single tunnel, despite many underground railway lines consisting of twin-bored tunnels. A unique model for two tunnels embedded in a homogeneous, elastic full space is developed. The vibration response of this two-tunnel system is calculated using the superposition of two displacement fields: one resulting from the forces acting on the invert of a single tunnel, and the other resulting from the interaction between the tunnels. By partitioning of the stresses into symmetric and anti-symmetric mode number components using Fourier decomposition, these two displacement fields can by calculated with minimal computational requirements. The significance of the interactions between twin-tunnels is quantified by calculating the insertion gains that result from the existence of a second tunnel. The insertion-gain results are shown to be localized and highly dependent on frequency, tunnel orientation and tunnel thickness. At some locations, the magnitude of these insertion gains is greater than 20dB. This demonstrates that a high degree of inaccuracy exists in any surface vibration-prediction model that includes only one of the two tunnels. © 2012 Springer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of the Italian research project ReLUIS-DPC, a set of centrifuge tests were carried out at the Schofield Centre in Cambridge (UK) to investigate the seismic behaviour of tunnels. Four samples of dry sand were prepared at different densities, in which a small scale model of circular tunnel was inserted, instrumented with gauges measuring hoop and bending strains. Arrays of accelerometers in the soil and on the box allowed the amplification of ground motion to be evaluated; LVDTs measured the soil surface settlement. This paper describes the main results of this research, showing among others the evolution of the internal forces during the model earthquakes at significant locations along the tunnel lining. © 2010 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Particle Image Velocimetry (PIV) technique is an image processing tool to obtain instantaneous velocity measurements during an experiment. The basic principle of PIV analysis is to divide the image into small patches and calculate the locations of the individual patches in consecutive images with the help of cross correlation functions. This paper focuses on the application of the PIV analysis in dynamic centrifuge tests on small scale tunnels in loose, dry sand. Digital images were captured during the application of the earthquake loading on tunnel models using a fast digital camera capable of taking digital images at 1000 frames per second at 1 Megapixel resolution. This paper discusses the effectiveness of the existing methods used to conduct PIV analyses on dynamic centrifuge tests. Results indicate that PIV analysis in dynamic testing requires special measures in order to obtain reasonable deformation data. Nevertheless, it was possible to obtain interesting mechanisms regarding the behaviour of the tunnels from PIV analyses. © 2010 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil-structure interaction mechanisms. The significance of these observations is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tracking applications provide real time on-site information that can be used to detect travel path conflicts, calculate crew productivity and eliminate unnecessary processes at the site. This paper presents the validation of a novel vision based tracking methodology at the Egnatia Odos Motorway in Thessaloniki, Greece. Egnatia Odos is a motorway that connects Turkey with Italy through Greece. Its multiple open construction sites serves as an ideal multi-site test bed for validating construction site tracking methods. The vision based tracking methodology uses video cameras and computer algorithms to calculate the 3D position of project related entities (e.g. personnel, materials and equipment) in construction sites. The approach provides an unobtrusive, inexpensive way of effectively identifying and tracking the 3D location of entities. The process followed in this study starts by acquiring video data from multiple synchronous cameras at several large scale project sites of Egnatia Odos, such as tunnels, interchanges and bridges under construction. Subsequent steps include the evaluation of the collected data and finally, performing the 3D tracking operations on selected entities (heavy equipment and personnel). The accuracy and precision of the method's results is evaluated by comparing it with the actual 3D position of the object, thus assessing the 3D tracking method's effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in the development of computer vision, miniature Micro-Electro-Mechanical Systems (MEMS) and Wireless Sensor Network (WSN) offer intriguing possibilities that can radically alter the paradigms underlying existing methods of condition assessment and monitoring of ageing civil engineering infrastructure. This paper describes some of the outcomes of the European Science Foundation project "Micro-Measurement and Monitoring System for Ageing Underground Infrastructures (Underground M3)". The main aim of the project was to develop a system that uses a tiered approach to monitor the degree and rate of tunnel deterioration. The system comprises of (1) Tier 1: Micro-detection using advances in computer vision and (2) Tier 2: Micro-monitoring and communication using advances in MEMS and WSN. These potentially low-cost technologies will be able to reduce costs associated with end-of-life structures, which is essential to the viability of rehabilitation, repair and reuse. The paper describes the actual deployment and testing of these innovative monitoring tools in tunnels of London Underground, Prague Metro and Barcelona Metro. © 2012 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The twin-tunnel construction of the Jubilee Line Extension tunnels beneath St James's Park was simulated using coupled-consolidation finite-element analyses. The effect of defining different permeabilities for the final consolidation stage was investigated, and the performance of a fissure softening model was also evaluated. The analyses suggested an unexpectedly high permeability anisotropy for soil around the tunnel crown, possibly due to stress-induced permeability changes, or low-permeability laminations. Also, the permeability profile and lining conductivity were found to differ between the tunnels. Inclusion of the fissure model gave a narrower settlement trough, more alike that in the field, by preferentially softening simple shear behaviour. Long-term settlements at the site continue to increase at an unexpectedly high rate, suggesting the possibility of creep or unexpected soil softening during excavation. © 2012 Taylor & Francis Group.